Skip to main content
Log in

Synthesis and characterization of Ba2Co2Fe12O22–NiFe2O4 ferrite composites: a useful substrate material in miniaturizing antenna

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The manuscript describes the electro-magnetic characterization of Ba2Co2Fe12O22(Co2Y) and NiFe2O4 ferrite composites synthesized by a one-step co-precipitation method. The composites of (Co2Y)1−x(NiFe2O4)x with x = 0.0, 0.25, 0.50, 0.75, and 1.0 were prepared. The X-ray diffraction (XRD) analysis confirmed the formation of pure phase NiFe2O4 and Co2Y ferrites after calcination at 600 and 1000 °C temperature, respectively. The XRD analysis showed two separate ferrite phases in the composite specimen, indicating the true nature of composite. The composites were sintered at 1200 °C for 4 h. The bulk density of x = 0.25 composition was the highest, and its microstructure was the most compact. The saturation magnetization, remanence magnetization, and coercivity of the composites increased with the increase in NiFe2O4 content. Among all the composites, x = 0.25 composition showed the highest permittivity and permeability due to its better densification and lower porosity. Permeability of all the composites was almost stable up to about 500 MHz. The AC conductivity and magnetic and dielectric losses were low up to about 500 MHz. A good miniaturization factor and matching impedance were shown by the composites, which would be useful as a substrate material in a miniaturizing antenna. The magnetic and dielectric properties suggest that the composite ferrite is a kind of magneto-dielectric material having potential for high-frequency applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V.G. Harris, IEEE Trans. Magn. 48, 1075–1104 (2012)

    Article  CAS  Google Scholar 

  2. H. Mossallaei, K. Sarabandi, IEEE Trans. Antennas Propag. 52, 1558–1567 (2004)

    Article  Google Scholar 

  3. L.B. Kong, Z.W. Li, G.Q. Lin, Y.B. Gan, IEEE Trans. Magn. 43, 6 (2007)

    Article  CAS  Google Scholar 

  4. J. Smith, H.P.J. Wijn, Ferrites (Philips Technical Library, Eindhoven, 1959).

    Google Scholar 

  5. R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012)

    Article  CAS  Google Scholar 

  6. G.J. Jonker, H.P.J. Wijn, P.B. Braun, Philips Tech. Rev. 18, 145 (1956)

    Google Scholar 

  7. Y. Peng, X. Wu, Z. Chen, W. Liu, F. Wang, X. Wang, Z. Feng, Y. Chen, V.G. Harris, J. Alloys Compd. 630, 48 (2015)

    Article  CAS  Google Scholar 

  8. J. Lee, Y.-K. Hong, W. Lee, G.S. Abo, J. Park, N. Neveu, W.-M. Seong, S.-H. Park, W.-K. Ahn, J. Appl. Phys. 111, 07A520 (2012)

    Article  Google Scholar 

  9. S. Fujii, K. Wakamatsu, H. Satoh, S. Yamamoto, IEEE Antennas Wirel. Propag. Lett. 15, 1171 (2016)

    Article  Google Scholar 

  10. I.B.T. Silva, A.G. D’assuncao, J.B.L. Oliveira, J.R.F. Guerra, C.H.N. Cordeiro, J. Electron. Mater. 49(7), 4186 (2020)

    Article  CAS  Google Scholar 

  11. Y. Yanga, J. Lia, H. Zhanga, G. Wanga, Y. Raoa, G. Gana, J. Magn. Magn. Mater. 4871, 165318 (2019)

    Article  Google Scholar 

  12. S.R. Bhongale, H.R. Ingavale, T.J. Shinde, P.N. Vasambekar, Int. J. Electron. Commun. 96, 246 (2018)

    Article  Google Scholar 

  13. A. Saini, K. Rana, A. Thakur, P. Thakur, J. Luc, P. Queffelec, Mater. Res. Bull. 76, 94 (2016)

    Article  CAS  Google Scholar 

  14. W. Qu, X.H. Wang, L. Li, Mater. Sci. Eng. B 99, 274 (2003)

    Article  Google Scholar 

  15. Z. Zheng, H. Zhang, Q. Yang, L. Jia, J. Am. Ceram. Soc. 97(7), 2016 (2014)

    Article  CAS  Google Scholar 

  16. H.I. Hsiang, P.W. Cheng, F.S. Yen, Ceram. Int. 38, 4915 (2012)

    Article  CAS  Google Scholar 

  17. Z. Zheng, H. Zhang, J.Q. Xiao, F. Bai, IEEE Trans. Magn. 49(7), 4214 (2013)

    Article  CAS  Google Scholar 

  18. H. Yang, M. Liu, Y. Lin, Y. Yang, J. Alloys Compd. 631, 335 (2015)

    Article  CAS  Google Scholar 

  19. M. Hoque, C. Srivastava, V. Kumar, N. Venkatesh, H.N. Das, D.K. Saha, K. Chattopadhyay, Mater. Res. Bull. 48, 2871 (2013)

    Article  Google Scholar 

  20. H.-I. Hsiang, R.-Q. Yao, Mater. Chem. Phys. 104, 1–4 (2007)

    Article  CAS  Google Scholar 

  21. R.C. Pullar, M.D. Taylor, A.K. Bhattacharya, J. Mater. Sci. 32, 365 (1997)

    Article  CAS  Google Scholar 

  22. S.E. Jacobo, P.G. Bercoff, C.A. Herme, L.A. Vives, Mater. Chem. Phys. 157, 124–129 (2015)

    Article  CAS  Google Scholar 

  23. C. Sudakar, G.N. Subbanna, T.R.N. Kutty, J. Magn. Magn. Mater. 268, 75–88 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the SERB-DST (Grant No. SB/S3/ME/076/2013) of the Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bera.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinaykumar, R., Prakash, S., Roy, P.K. et al. Synthesis and characterization of Ba2Co2Fe12O22–NiFe2O4 ferrite composites: a useful substrate material in miniaturizing antenna. J Mater Sci: Mater Electron 32, 7330–7339 (2021). https://doi.org/10.1007/s10854-021-05443-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05443-2

Navigation