Skip to main content

Advertisement

Log in

Role of hydrogen in modifying a-Si:H/c-Si interface passivation and band alignment for rear-emitter silicon heterojunction solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Boosting the contact property of intrinsic hydrogenated amorphous silicon (a-Si:H(i)) film is pivotal to achieving high-efficiency silicon heterojunction (SHJ) solar cells. Here, the microstructure of a-Si:H(i) film is modified with hydrogen dilution ratio using hot wire chemical vapor deposition (HWCVD) for the application into rear-emitter SHJ solar cells. A higher hydrogen content associated with high valence band offset was found to decrease the fill factor FF for low dilution, while high interface defect densities related to epitaxial growth are responsible for the deterioration of both FF and open-circuit voltage VOC for high dilution. In particular, the most compact film prepared at a moderate dilution exhibits the most compact structure with most hydrogen located as isolated hydrogen rather than clustered hydrogen. Finally, high efficiency of SHJ solar cells up to 22.5% was yielded using the optimized a-Si:H(i) layer thanks to a significant enhancement of FF, which is attributed to improved passivation quality and rational band alignment at the a-Si:H(i)/c-Si interface. This work clearly interpreted the correlation between SHJ device parameters and a-Si:H(i)/c-Si interface properties, which might guide the design of a-Si:H passivation layers in pursuit of high-efficiency SHJ solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Haschke, O. Dupré, M. Boccard, C. Ballif, Sol. Energy Mater. Sol. Cells 187, 140–153 (2018)

    Article  CAS  Google Scholar 

  2. D. Adachi, J.L. Hernandez, K. Yamamoto, Appl. Phys. Lett. 107, 233506 (2015)

    Article  Google Scholar 

  3. M.A. Green, Y. Hishikawa, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, A.W.Y. Ho‐Baillie, Prog. Photovolt. 26(7), 427–436 (2018)

    Article  Google Scholar 

  4. F. Wang, X. Zhang, L. Wang, Y. Jiang, C. Wei, S. Xu, Y. Zhao, Phys. Chem. Chem. Phys. 16, 20202–20208 (2014)

    Article  CAS  Google Scholar 

  5. R. Gogolin, R. Ferré, M.Turcu and N.-P.Harder, Sol. Energy Mater. Sol. Cells 106, 47–50 (2012)

    Article  CAS  Google Scholar 

  6. T. Ruan, M. Qu, J. Wang, Y. He, X. Xu, C. Yu, Y. Zhang, J. Mater. Sci. 30, 13330–13335 (2019)

    CAS  Google Scholar 

  7. A.H.M. Smets, W.M.M. Kessels, M.C.M. van de Sanden, Appl. Phys. Lett. 82, 1547 (2003)

    Article  CAS  Google Scholar 

  8. Z.E. Smith, S. Wagner, Phys. Rev. B 32, 5510 (1985)

    Article  CAS  Google Scholar 

  9. M.H. Brodsky, J.J. Manuel Cardona, Cuomo, Phys. Rev. B 16, 3556 (1977)

    Article  CAS  Google Scholar 

  10. A.H.M. Smets, M.C.M. van de Sanden, Phys. Rev. B 76, 073202 (2007)

    Article  Google Scholar 

  11. A. Richter, M. Hermle, S.W. Glunz, IEEE J. Photovol. 3, 1184–1191 (2013)

    Article  Google Scholar 

  12. H. Matsumur, H. Umemoto, A. Masuda, J. Non-Cryst. Solids 338, 19–26 (2004)

    Article  Google Scholar 

  13. Z. Wu, L. Zhang, R. Chen, W. Liu, Z. Li, F. Meng, Z. Liu, Appl. Surf. Sci. 475, 504–509 (2019)

    Article  CAS  Google Scholar 

  14. M.A. Lieberman, J.P. Booth, P. Chabert, J.M. Rax, M.M. Turner, Plasma Sources Sci. Technol. 11, 283 (2002)

    Article  Google Scholar 

  15. K. Ishibashi, M. Karasawa, G. Xu, N. Yokokawa, I. Manabu, A. Masuda, H. Matsumura, Thin Solid Films 430, 58 (2003)

    Article  CAS  Google Scholar 

  16. P.A. Frigeri, O. Nos, J.D. Calvo, P. Carreras, R. Roldan, A. Antony, J.M. Asensi, J. Bertomeu, Phys. Status Solidi C 7, 588–591 (2010)

    CAS  Google Scholar 

  17. G.E. Jellison Jr., F.A. Modine, Appl. Phys. Lett. 69, 371–373 (1996)

    Article  CAS  Google Scholar 

  18. Z. Iqbal, S. Veprek, J. Phys. C 15, 377–392 (1982)

    Article  CAS  Google Scholar 

  19. S. Sriraman, S. Agarwal, E.S. Aydil, D. Maroudas, Nature 418, 62 (2002)

    Article  CAS  Google Scholar 

  20. F. Wang, R. Du, Q. Ren, C. We, Y. Zhao, X. Zhang, J. Mater. Chem. C 5, 1751–1757 (2017)

    Article  CAS  Google Scholar 

  21. N. Layadi, P. Roca i Cabarrocas, B. Drévillon, I. Solomon, Phys. Rev. B 52, 5136 (1995)

    Article  CAS  Google Scholar 

  22. H. Fujiwara, M. Kondo, A. Matsuda, Phys. Rev. B 63, 115306 (2001)

    Article  Google Scholar 

  23. J. Oh, H.C. Yuan, H.M. Branz, Nat. Nanotechnol. 7, 743 (2012)

    Article  CAS  Google Scholar 

  24. S. De Wolf, M. Kondo, Appl. Phys. Lett. 90, 042111 (2007)

    Article  Google Scholar 

  25. B. Macco, J. Melskens, N.J. Podraza, K. Arts, C. Pugh, O. Thomas, W.M.M. Kessels, J. Appl. Phys. 122, 035302 (2017)

    Article  Google Scholar 

  26. M. Mews, M. Liebhaber, B. Rech, L. Korte, Appl. Phys. Lett. 107, 013902 (2015)

    Article  Google Scholar 

  27. W. Liu, L. Zhang, S. Cong, R. Chen, Z. Wu, F. Meng, Q. Shi, Z. Liu, Sol. Energy Mater. Sol. Cells 174, 233–239 (2018)

    Article  CAS  Google Scholar 

  28. T.F. Schulze, L. Korte, F. Ruske, B. Rech, Phys. Rev. B 83, 165314 (2011)

    Article  Google Scholar 

  29. Z. Shu, U. Das, J. Allen, R. Birkmire, S. Hegedus, Prog. Photovolt. 23, 78–93 (2014)

    Article  Google Scholar 

  30. A. Kanevce, W.K. Metzger, J. Appl. Phys. 105, 094507 (2009)

    Article  Google Scholar 

  31. M.W.M. van Cleef, R.E.I. Schropp, F.A. Rubinelli, Appl. Phys. Lett. 73, 2609 (1998)

    Article  Google Scholar 

  32. M. Leilaeioun, W. Weigand, M. Boccard, Z.J. Yu, K. Fisher, Z.C. Holman, IEEE J. Photovol. 10, 54–62 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by projects of the Strategic Priority Research Program and the Joint Fund of Chinese Academy of Sciences (XDA17020403, 6141A01141604), the Innovation Development Fund of Shanghai Zhangjiang (ZJ2018-ZD-010), Shanghai Sailing Program (17YF1423000) and Science and Technology Commission of Shanghai (17DZ1201100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liping Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Zhang, L., Liu, W. et al. Role of hydrogen in modifying a-Si:H/c-Si interface passivation and band alignment for rear-emitter silicon heterojunction solar cells. J Mater Sci: Mater Electron 31, 9468–9474 (2020). https://doi.org/10.1007/s10854-020-03486-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03486-5

Navigation