Skip to main content
Log in

Analysis of neodymium rare earth element doping in PbS films for opto-electronics applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this novel work, we discuss the effect of neodymium doping concentration on PbS thin films coated on glass substrates by a simple nebulizer spray pyrolysis method. The XRD analysis indicated that all the prepared PbS and PbS:Nd films possess polycrystalline simple cubic crystal structure along (200) preferential orientation and the estimated crystallites size tapered from 21 to 18 nm with growing Nd concentration. It is detected that Raman spectra of all films shows four characteristic mode at 186 cm−1, 281 cm−1, 326 cm−1, and 472 cm−1 certify the formation of PbS thin films. The micrographs obtained from scanning electron microscope indicated uniform particle on the surface of the films. Energy dispersive spectroscopy and mapping analyses confirmed the elemental composition. From the linear optical study by UV–Visible spectrometer exposed the absorption level of all the PbS:Nd films was constantly maintained in the whole visible and IR spectrum which is better for optical device fabrication. The rising of Nd content showed enhancement in band-gap as 2.13 to 2.41 eV. I–V characteristics of all the prepared films were done under dark and illumination conditions. Photosensitivity of the PbS films is enhanced after Nd doping, which result in enhancement of photo current. The results suggest that the proposed strategy can be applied to prepare high-performance photosensitivity thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Touati, A. Gassoumi, I. Dobryden, M.M. Natile, A. Vomiero, N.K. Turki, Engineering of electronic and optical properties of PbS thin films via Cu doping. Superlattices Microstruct. 97, 519–528 (2016)

    CAS  Google Scholar 

  2. R. Palomino-Merino, O. Portillo-Moreno, J. Flores-Garcia, J. Hernandez-Tecorralco, J. Martinez-Juarez, A. Moran-Torres, E. Rubio-Rosas, G. Hernandez-Tellez, R. Gutierrez-Perez, L. Chaltel-Lima, PbS nanostructured thin films by in situ Cu-doping. J. Nanosci. Nanotechnol. 14, 5408–5414 (2014)

    CAS  Google Scholar 

  3. A. Trukhanov, V. Kostishyn, L. Panina, S. Jabarov, V. Korovushkin, S. Trukhanov, E. Trukhanova, Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites. Ceram. Int. 43, 12822–12827 (2017)

    CAS  Google Scholar 

  4. S. Khatoon, K. Coolahan, S.E. Lofland, T. Ahmad, Solvothermal synthesis of In2−xCoxO3 (0.05 ≤ x ≤ 0.15) dilute magnetic semiconductors: optical, magnetic, and dielectric properties. J. Am. Ceram. Soc. 96, 2544–2550 (2013)

    CAS  Google Scholar 

  5. R. Das, K. Rajesh, Preparation of nanocrystalline PbS thin films and effect of Sn doping and annealing on their structural and optical properties. Mater. Res. Bull. 47, 239–246 (2012)

    CAS  Google Scholar 

  6. M. Faraj, F. Chaqmaqchee, H. Omar, Structural, morphological and electrical properties of Zn doped PbS thin films by chemical spray pyrolysis. J. Optoelectron. Adv. Mater. 19, 412–416 (2017)

    CAS  Google Scholar 

  7. W.-T. Yao, S.-H. Yu, Synthesis of semiconducting functional materials in solution: from II–VI semiconductor to inorganic-organic hybrid semiconductor nanomaterials. Adv. Funct. Mater. 18, 3357–3366 (2008)

    CAS  Google Scholar 

  8. D.H. Yeon, S.M. Lee, Y.H. Jo, J. Moon, Y.S. Cho, Origin of the enhanced photovoltaic characteristics of PbS thin film solar cells processed at near room temperature. J. Mater. Chem. A 2, 20112–20117 (2014)

    CAS  Google Scholar 

  9. I. Pop, C. Nascu, V. Ionescu, E. Indrea, I. Bratu, Structural and optical properties of PbS thin films obtained by chemical deposition. Thin Solid Films 307, 240–244 (1997)

    CAS  Google Scholar 

  10. S. Trukhanov, A. Trukhanov, L. Panina, V. Kostishyn, V. Turchenko, E. Trukhanova, A.V. Trukhanov, T. Zubar, V. Ivanov, D. Tishkevich, Temperature evolution of the structure parameters and exchange interactions in BaFe12−xInxO19. J. Magn. Magn. Mater. 466, 393–405 (2018)

    CAS  Google Scholar 

  11. I.O. Troyanchuk, S.V. Trukhanov, H. Szymczak, K. Baerner, Effect of oxygen content on the magnetic and transport properties of Pr0.5Ba0.5MnO3-γ. J. Phys. 12, L155–L158 (2000)

    CAS  Google Scholar 

  12. M.C. Portillo, O.P. Moreno, R.G. Pérez, R.P. Merino, H.S. Juarez, S.T. Cuapa, E.R. Rosas, Characterization and growth of doped-PbS in situ with Bi3+, Cd2+ and Er3+ ions by chemical bath. Mater. Sci. Semicond. Process. 72, 22–31 (2017)

    CAS  Google Scholar 

  13. K. Preetha, T. Remadevi, Effect of Al incorporation on the structural, morphological, optoelectronic and transport properties of PbS thin films. Phys B 407, 4173–4181 (2012)

    CAS  Google Scholar 

  14. X. Zheng, F. Gao, F. Ji, H. Wu, J. Zhang, X. Hu, Y. Xiang, Cu-doped PbS thin films with low resistivity prepared via chemical bath deposition. Mater. Lett. 167, 128–130 (2016)

    CAS  Google Scholar 

  15. B. Touati, A. Gassoumi, S. Alfaify, N. Kamoun-Turki, Optical, morphological and electrical studies of Zn: PbS thin films. Mater. Sci. Semicond. Process. 34, 82–87 (2015)

    CAS  Google Scholar 

  16. R. Geethu, R. Jacob, T. Shripathi, G.S. Okram, V. Ganesan, S. Tripathi, A. Fatima, P.V. Sreenivasan, K.S. Urmila, B. Pradeep, R.R. Philip, Optoelectronic and thermoelectric properties in Ga doped β- PbS2 nanostructured thin films. Appl. Surf. Sci. 258, 6257–6260 (2012)

    CAS  Google Scholar 

  17. C. Rajashree, A. Balu, V. Nagarethinam, Properties of Cd doped PbS thin films: doping concentration effect. Surf. Eng. 31, 316–321 (2015)

    CAS  Google Scholar 

  18. R. Kumar, R. Das, M. Gupta, V. Ganesan, Preparation of nanocrystalline Sb doped PbS thin films and their structural, optical, and electrical characterization. Superlattices Microstruct. 75, 601–612 (2014)

    CAS  Google Scholar 

  19. B. Touati, A. Gassoumi, C. Guasch, N.K. Turki, Cd2+doped PbS thin films for photovoltaic applications: Novel low-cost perspective. Mater. Sci. Semicond. Process. 67, 20–27 (2017)

    CAS  Google Scholar 

  20. S. Abe, K. Masumoto, K. Suto, Growth and characterization of Bi-doped PbS thin films prepared by hot-wall epitaxy. J. Cryst. Growth 181, 367–373 (1997)

    CAS  Google Scholar 

  21. T.P. Sharma, R. Kumar, G. Jain, S.K. Sharma, Study of Cu doping on PbS thin films. Mod. Phys. Lett. B 03, 825–828 (1989)

    CAS  Google Scholar 

  22. M. Shkir, S. AlFaify, A facile low-temperature synthesis of nanosheets assembled PbS microflowers and their structural, morphological, optical, photoluminescence, dielectric and electrical studies. Mater. Res. Express 6, 105013 (2019)

    CAS  Google Scholar 

  23. M. Shkir, M.T. Khan, A. Khan, A.M. El-Toni, A. Aldalbahi, S. AlFaify, Facilely synthesized Cu:PbS nanoparticles and their structural, morphological, optical, dielectric and electrical studies for optoelectronic applications. Mater. Sci. Semicond. Process. 96, 16–23 (2019)

    CAS  Google Scholar 

  24. M. Shkir, M.T. Khan, I.M. Ashraf, S. AlFaify, A.M. El-Toni, A. Aldalbahi, H. Ghaithan, A. Khan, Rapid microwave-assisted synthesis of Ag-doped PbS nanoparticles for optoelectronic applications. Ceram. Int. 45, 21975–21985 (2019)

    CAS  Google Scholar 

  25. D.J. Edison, W. Nirmala, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications. Phys B 523, 31–38 (2017)

    CAS  Google Scholar 

  26. V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, S. AlFaify, Novel rare earth Gd and Al co-doped ZnO thin films prepared by nebulizer spray method for optoelectronic applications. Superlattices Microstruct. 123, 311–322 (2018)

    CAS  Google Scholar 

  27. W. Yu-Xi, H. Zhi-Xiang, G. Shu-Lin, Q. Li-Cheng, L. Teng, Z. Hao, Electronic structure and optical properties of rare earth element (Y, La) doped in ZnO. Acta Phys. Sin. 60, 017101 (2011)

    Google Scholar 

  28. Q.-Q. Li, Q.-Y. Hao, Y. Li, G.-D. Liu, Theory study of rare earth (Ce, Pr) doped GaN in electronic structrue and optical property. Acta Phys. Sin. (2013). https://doi.org/10.7498/aps.62.017103

    Article  Google Scholar 

  29. Q. Ren, B.-X. Wang, X-l Wu, T.-Y. Wei, Z.-Z. Huo, Influence of Eu~(3+) doping on luminescent properties of Ba_3La (PO_4)_3∶ Dy~(3+) white phosphor and its luminescent mechanism. J. Synth. Cryst. 2, 14 (2016)

    Google Scholar 

  30. Y.J. Yang, A novel electrochemical preparation of PbS nanoparticles. Mater. Sci. Eng. B 131, 200–202 (2006)

    CAS  Google Scholar 

  31. M. Takahashi, Y. Ohshima, K. Nagata, S. Furuta, Electrodeposition of PbS films from acidic solution. J. Electroanal. Chem. 359, 281–286 (1993)

    CAS  Google Scholar 

  32. E. Sarica, V. Bilgin, Study of some physical properties of ultrasonically spray deposited silver doped lead sulphide thin films. Mater. Sci. Semicond. Process. 68, 288–294 (2017)

    CAS  Google Scholar 

  33. Z. Xiu, S. Liu, J. Yu, F. Xu, W. Yu, G. Feng, Sonochemical synthesis of PbS nanorods. J. Alloys Compd. 457, L9–L11 (2008)

    CAS  Google Scholar 

  34. F. Gode, O. Baglayan, E. Guneri, P-Type nanostructure Pbs thin films prepared by the SILAR method. Chalcogenide Lett. 12, 519–528 (2015)

    CAS  Google Scholar 

  35. A. Martucci, J. Fick, S.-É. LeBlanc, M. LoCascio, A. Haché, Optical properties of PbS quantum dot doped sol–gel films. J. Non Cryst. Solids 345–346, 639–642 (2004)

    Google Scholar 

  36. J.A. García-Valenzuela, M.R. Baez-Gaxiola, M. Sotelo-Lerma, Chemical bath deposition of PbS thin films on float glass substrates using a Pb(CH3COO)2–NaOH–(NH2)2CS–N(CH2CH2OH)3–CH3CH2OH definite aqueous system and their structural, optical, and electrical/photoelectrical characterization. Thin Solid Films 534, 126–131 (2013)

    Google Scholar 

  37. H. Moreno-García, M.T.S. Nair, P.K. Nair, Chemically deposited lead sulfide and bismuth sulfide thin films and Bi2S3/PbS solar cells. Thin Solid Films 519, 2287–2295 (2011)

    Google Scholar 

  38. S. Kaci, A. Keffous, M. Trari, O. Fellahi, H. Menari, A. Manseri, L. Guerbous, Relationship between crystal morphology and photoluminescence in polynanocrystalline lead sulfide thin films. J. Luminol. 130, 1849–1856 (2010)

    CAS  Google Scholar 

  39. K.M. Gadave, S.A. Jodgudri, C.D. Lokhande, Chemical deposition of PbS from an acidic bath. Thin Solid Films 245, 7–9 (1994)

    CAS  Google Scholar 

  40. E. Yücel, Y. Yücel, Fabrication and characterization of Sr-doped PbS thin films grown by CBD. Ceram. Int. 43, 407–413 (2017)

    Google Scholar 

  41. S. Ravishankar, A.R. Balu, K. Usharani, S. Balamurugan, D. Prabha, V.S. Nagarethinam, Optical and magnetic properties of PbS thin films doped with Fe2+ ions. Optik 134, 121–127 (2017)

    CAS  Google Scholar 

  42. P. Klug, L. Alexander, X-Ray Diffraction Procedures (Wiley, New York, 1954)

    Google Scholar 

  43. J.-I. Wang, I.R. Harrison, 6.2 crystallite size and lamellar thickness by x-ray methods, in Methods in Experimental Physics, ed. by R.A. Fava (Academic Press, Cambridge, 1980), pp. 128–184

    Google Scholar 

  44. M. Shkir, S. AlFaify, Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017)

    Google Scholar 

  45. S. Mohd, Z.R. Khan, M.S. Hamdy, H. Algarni, S. AlFaify, A facile microwave-assisted synthesis of PbMoO 4 nanoparticles and their key characteristics analysis: a good contender for photocatalytic applications. Mater. Res. Express 5, 095032 (2018)

    Google Scholar 

  46. M. Shkir, I.S. Yahia, M. Kilany, M.M. Abutalib, S. AlFaify, R. Darwish, Facile nanorods synthesis of KI:HAp and their structure-morphology, vibrational and bioactivity analyses for biomedical applications. Ceram Int. 45, 50–55 (2019)

    CAS  Google Scholar 

  47. M. Shkir, K.V. Chandekar, A. Khan, A.M. El-Toni, S. AlFaify, A facile synthesis of Bi@PbS nanosheets and their key physical properties analysis for optoelectronic technology. Mater. Sci. Semicond. Process. 107, 104807 (2020)

    CAS  Google Scholar 

  48. M. Shkir, I.M. Ashraf, S. AlFaify, A.M. El-Toni, M. Ahmed, A. Khan, A noticeable effect of Pr doping on key optoelectrical properties of CdSa thin films prepared using spray pyrolysis technique for high-performance photodetector applications. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.10.196

    Article  Google Scholar 

  49. Y. Bencherif, A. Boukra, A. Zaoui, M. Ferhat, Lattice dynamics study of lead chalcogenides. Infrared. Phys. Technol. 54, 39–43 (2011)

    CAS  Google Scholar 

  50. S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, A.N. Vasil’ev, A. Maignan, H. Szymczak, Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure. JETP Lett. 83, 33–36 (2006)

    CAS  Google Scholar 

  51. S.V. Trukhanov, Magnetic and magnetotransport properties of La1−xBaxMnO3−x/2 perovskite manganites. J. Mater. Chem. 13, 347–352 (2003)

    CAS  Google Scholar 

  52. V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, Self-doped lanthanum manganites as a phase-separated system: Transformation of magnetic, resonance, and transport properties with doping and hydrostatic compression. J. Appl. Phys. 104, 093909 (2008)

    Google Scholar 

  53. C. Rajashree, A. Balu, Tuning the physical properties of PbS thin films towards optoelectronic applications through Ni doping. Optik 127, 8892–8898 (2016)

    CAS  Google Scholar 

  54. S. Wageh, W.A. Farooq, A. Tataroğlu, A. Dere, A.G. Al-Sehemi, A.A. Al-Ghamdi, F. Yakuphanoglu, A photodiode based on PbS nanocrystallites for FYTRONIX solar panel automatic tracking controller. Phys B 527, 44–51 (2017)

    CAS  Google Scholar 

  55. S. Ravishankar, A.R. Balu, V.S. Nagarethinam, Effect of Gd3+ ions on the thermal behavior, optical, electrical and magnetic properties of PbS thin films. J. Electron. Mater. 47, 1271–1278 (2018)

    CAS  Google Scholar 

  56. C.G. Munce, G.K. Parker, S.A. Holt, G.A. Hope, A Raman spectroelectrochemical investigation of chemical bath deposited CuxS thin films and their modification. Colloids Surf. A 295, 152–158 (2007)

    CAS  Google Scholar 

  57. K. Jeyabanu, P. Devendran, A. Manikandan, R. Packiaraj, K. Ramesh, N. Nallamuthu, Preparation and characterization studies of La doped CuS nanospheres by microwave irradiation for high performance supercapacitors. Phys B 573, 92–101 (2019)

    CAS  Google Scholar 

  58. R. Bai, D. Kumar, S. Chaudhary, D.K. Pandya, Highly crystalline p-PbS thin films with tunable optical and hole transport parameters by chemical bath deposition. Acta Mater. 131, 11–21 (2017)

    CAS  Google Scholar 

  59. M. Cheraghizade, R. Yousefi, F. Jamali-Sheini, Comparative study of Raman properties of various lead sulfide morphologies, Majlesi J. Telecommun. Dev. 2 (2013).

  60. E. Yücel, Y. Yücel, Effect of doping concentration on the structural, morphological and optical properties of Ca-doped PbS thin films grown by CBD. Optik 142, 82–89 (2017)

    Google Scholar 

  61. K.D. Arun Kumar, S. Valanarasu, A. Kathalingam, K. Jeyadheepan, Nd3+ doping effect on the optical and electrical properties of SnO2 thin films prepared by nebulizer spray pyrolysis for opto-electronic application. Mater. Res. Bull. 101, 264–271 (2018)

    CAS  Google Scholar 

  62. V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, N. Lupu, Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties. J. Magn. Magn. Mater. 477, 9–16 (2019)

    CAS  Google Scholar 

  63. A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanova, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, S.V. Trukhanov, Features of crystal and magnetic structure of the BaFe12-xGaxO19 (x ≤ 2) in the wide temperature range. J. Alloys. Compd. 791, 522–529 (2019)

    CAS  Google Scholar 

  64. A. Arulanantham, S. Valanarasu, A. Kathalingam, M. Shkir, H.-S. Kim, An investigation on SnS layers for solar cells fabrication with CdS, SnS 2 and ZnO window layers prepared by nebulizer spray method. Appl. Phys. A 124, 776 (2018)

    CAS  Google Scholar 

  65. S.R. Rosario, I. Kulandaisamy, A.M.S. Arulanantham, K.D.A. kumar, S. Valanarasu, M.S. Hamdy, K.S. Al-Namshah, A.M. Alhanash, Analysis of Cu doping concentration on PbS thin films for the fabrication of solar cell using feasible nebulizer spray pyrolysis. Mater. Res. Express 6, 056201 (2019)

    CAS  Google Scholar 

  66. A.J. Deotale, R.V. Nandedkar, Correlation between particle size strain and band gap of iron oxide nanoparticles. Mater. Today 3, 2069–2076 (2016)

    Google Scholar 

  67. J.-D. Chen, T.-Y. Jin, Y.-Q. Li, J.-X. Tang, Recent progress of light manipulation strategies in organic and perovskite solar cells. Nanoscale 11, 18517–18536 (2019)

    CAS  Google Scholar 

  68. C. Rajashree, A. Balu, V. Nagarethinam, Enhancement in the physical properties of spray deposited nanostructured ternary PbMgS thin films towards optoelectronic applications. J. Mater. Sci. 27, 5070–5078 (2016)

    CAS  Google Scholar 

  69. A. Carrillo-Castillo, A. Salas-Villasenor, I. Mejia, S. Aguirre-Tostado, B.E. Gnade, M.A. Quevedo-López, P-type thin films transistors with solution-deposited lead sulfide films as semiconductor. Thin Solid Films 520, 3107–3110 (2012)

    CAS  Google Scholar 

  70. A.S. Hassanien, Studies on dielectric properties, opto-electrical parameters and electronic polarizability of thermally evaporated amorphous Cd50S50−xSex thin films. J. Alloys Compd. 671, 566–578 (2016)

    CAS  Google Scholar 

  71. F. Yakuphanoglu, A. Cukurovali, İ. Yilmaz, Refractive index and optical absorption properties of the complexes of a cyclobutane containing thiazolyl hydrazone ligand. Opt. Mater. 27, 1363–1368 (2005)

    CAS  Google Scholar 

  72. H.K. Sadekar, A.V. Ghule, R. Sharma, Fabrication of CdSe thin film for photosensor applications. Int. J. Innov. Eng. Technol. 5, 35–41 (2015)

    Google Scholar 

  73. A.S. Dive, N.P. Huse, K.P. Gattu, R. Sharma, A high visible light ZnMgS nanorod thin film photosensor by solution growth technique, AIP Conference Proceedings, AIP Publishing, 2017, pp. 120007.

Download references

Acknowledgements

Authors express their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under Grant Number R.G.P. 2/41/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramaswamy.

Ethics declarations

Conflict of interest

Authors declare that they have no conflicts of interest in the current work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paulraj, K., Ramaswamy, S., Shkir, M. et al. Analysis of neodymium rare earth element doping in PbS films for opto-electronics applications. J Mater Sci: Mater Electron 31, 1817–1827 (2020). https://doi.org/10.1007/s10854-019-02698-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02698-8

Navigation