Skip to main content
Log in

Study on the effect of carbon nanotube on the properties of electrically conductive epoxy/polyaniline adhesives

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electrically conductive hybrid epoxy (EP) adhesives filled with p-toluenesulfonic acid (PTSA) doped polyaniline (PANI) and carbon nanotubes (CNT) were prepared and their electrical, thermal and morphological properties were investigated. The CNT was incorporated in EP/PANI (1, 3, 5, 7, 10 and 15 wt%) to obtain hybrid composites aiming to achieve better conductivity. Percolation threshold in EP/PANI and EP/CNT binary composites achieved was at around 5% of PANI and 0.2% CNT, respectively. It was observed that the addition of 0.1% CNT in EP/PANI (5%) composites improved the electrical conductivity of composites with a minimal effect on lap shear strength. Differential scanning calorimetry (DSC) studies revealed that while 0.1% CNT addition had an insignificant retardation effect on the curing of EP/PANI (5%), it increased the glass transition temperature (T g ) of cured sample significantly. Although, incorporation of PANI increased the thermal stability of epoxy significantly, addition of CNT further enhanced it marginally in the temperature range of 200–400 °C. FT-IR and XRD spectra of PANI/CNT hybrid fillers system showed molecular level interaction and good dispersing ability of CNT with PANI, respectively. Interestingly, morphological studies showed good dispersion of PANI and CNT in epoxy matrix in binary composites as well as in hybrid composites with no phase separation between PANI and CNT. Optical micrographs showed better dispersion of hybrid PANI/CNT filler system within epoxy matrix compared to PANI only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.B. Jakubinek, B. Ashrafi, Y. Zhang, Y. Martinez-Rubi, C.T. Kingston, A. Johnston, B. Simard, Compos. B Eng. 69, 87 (2015)

    Article  Google Scholar 

  2. G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, RSC Adv. 5, 37553 (2015)

    Article  Google Scholar 

  3. R. Kotsilkova, E. Ivanov, D. Bychanok, A. Paddubskaya, M. Demidenko, J. Macutkevic, S. Maksimenko, P. Kuzhir, Compos. Sci. Technol. 106, 85 (2015)

    Article  Google Scholar 

  4. J. Wang, C. Zhang, Z. Du, H. Li, W. Zou, RSC Adv. 6, 31782 (2016)

    Article  Google Scholar 

  5. P. Sambyal, G. Ruhi, R. Dhawan, S.K. Dhawan, Surf. Coat. Technol. 303, 362 (2016)

    Article  Google Scholar 

  6. L.-N. Ho, T.F. Wu, H. Nishikawa, T. Takemoto, K. Miyake, M. Fujita, K. Ota, J. Mater. Sci. Mater. Electron. 22, 735 (2011)

    Article  Google Scholar 

  7. I.A. Mir, D. Kumar, Int. J. Polym. Mater. Polym. Biomater. 59, 994 (2010)

    Article  Google Scholar 

  8. Y. Zemen, S.C. Schulz, H. Trommler, S.T. Buschhorn, W. Bauhofer, K. Schulte, Sol. Energy Mater. Sol. Cells 109, 155 (2013)

    Article  Google Scholar 

  9. A.K. Bakhshi, G. Bhalla, J. Sci. Ind. Res. 63, 715 (2004)

    Google Scholar 

  10. S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Prog. Polym. Sci. 34, 783 (2009)

    Article  Google Scholar 

  11. M. Hatamzadeh, M. Jaymand, RSC Adv. 4, 28653 (2014)

    Article  Google Scholar 

  12. Q. Yang, S. Wei, G. Cheng, Polym. Compos. 27, 201 (2006)

  13. E. Petrie, Epoxy Adhesive Formulations (McGraw-Hill Professional, New York, 2005)

    Google Scholar 

  14. J. Peltola, Y. Cao, P. Smith, Adhes. Age 38, 18 (1995)

    Google Scholar 

  15. B.G. Soares, M.L. Celestino, M. Magioli, V.X. Moreira, D. Khastgir, Synth. Met. 160, 1981 (2010)

    Article  Google Scholar 

  16. P. Tsotra, K. Friedrich, Synth. Met. 143, 237 (2004)

    Article  Google Scholar 

  17. W. Jia, R. Tchoudakov, E. Segal, M. Narkis, A. Siegmann, J. Appl. Polym. Sci. 91, 1329 (2004)

    Article  Google Scholar 

  18. B. Belaabed, J.L. Wojkiewicz, S. Lamouri, N. El Kamchi, N. Redon, Polym. Adv. Technol. 23, 1194 (2012)

    Article  Google Scholar 

  19. T. Jeevananda, S. Palaniappan, Siddaramaiah, J. Appl. Polym. Sci. 74, 3507 (1999)

    Article  Google Scholar 

  20. J. Lu, K.-S. Moon, B.-K. Kim, C.P. Wong, Polymer 48, 1510 (2007)

    Article  Google Scholar 

  21. P. Tsotra, O. Gryshchuk, K. Friedrich, Macromol. Chem. Phys. 206, 787 (2005)

    Article  Google Scholar 

  22. M. Oyharçabal, T. Olinga, M.P. Foulc, V. Vigneras, Synth. Met. 162, 555 (2012)

    Article  Google Scholar 

  23. D.R. Paul, L.M. Robeson, Polymer 49, 3187 (2008)

    Article  Google Scholar 

  24. S.K. Sahoo, S. Mohanty, S.K. Nayak, Prog. Org. Coat. 88, 263 (2015)

    Article  Google Scholar 

  25. E.T. Thostenson, Z. Ren, T.-W. Chou, Compos. Sci. Technol. 61, 1899 (2001)

    Article  Google Scholar 

  26. Y.H. Liao, O. Marietta-Tondin, Z. Liang, C. Zhang, B. Wang, Mater. Sci. Eng. A 385, 175 (2004)

    Article  Google Scholar 

  27. J.M. Wernik, S.A. Meguid, Mater. Des. 59, 19 (2014)

    Article  Google Scholar 

  28. S.A. Sydlik, J.H. Lee, J.J. Walish, E.L. Thomas, T.M. Swager, Carbon 59, 109 (2013)

    Article  Google Scholar 

  29. V. Choudhary, B.P. Singh, R.B. Mathur, Carbon nanotubes and their composites, ed. by S. Suzuki, Carbon Nanotubes and Their Composites, Syntheses and Applications of Carbon Nanotubes and Their Composites (InTech, Rijeka, 2013). doi:10.5772/52897

    Google Scholar 

  30. P.C. Ma, M.Y. Liu, H. Zhang, S.Q. Wang, R. Wang, K. Wang, Y.K. Wong, B.Z. Tang, S.H. Hong, K.W. Paik, J.K. Kim, ACS Appl. Mater. Interfaces 1, 1090 (2009)

    Article  Google Scholar 

  31. J. Sumfleth, X.C. Adroher, K. Schulte, J. Mater. Sci. 44, 3241 (2009)

    Article  Google Scholar 

  32. L. Yue, G. Pircheraghi, S.A. Monemian, I. Manas-Zloczower, Carbon 78, 268 (2014)

    Article  Google Scholar 

  33. W. Li, A. Dichiara, J. Bai, Compos. Sci. Technol. 74, 221 (2013)

    Article  Google Scholar 

  34. H. Zengin, W. Zhou, J. Jin, R. Czerw, D.W. Smith, L. Echegoyen, D.L. Carroll, S.H. Foulger, J. Ballato, Adv. Mater. 14, 1480 (2002)

    Article  Google Scholar 

  35. B. Massoumi, M. Hosseinzadeh, M. Jaymand, J. Mater. Sci. Mater. Electron. 26, 6057 (2015)

    Article  Google Scholar 

  36. Y. Haba, E. Segal, M. Narkis, G. Titelman, A. Siegmann, Synth. Met. 106, 59 (1999)

    Article  Google Scholar 

  37. N.V. Bhat, D.T. Seshadri, R.S. Phadke, Synth. Met. 130, 185 (2002)

    Article  Google Scholar 

  38. A. Kapil, M. Taunk, S. Chand, J. Mater. Sci. Mater. Electron. 21, 399 (2010)

    Article  Google Scholar 

  39. H. Gou, J. He, Z. Mo, Z. Zhao, J. Mater. Sci. Mater. Electron. 26, 7295 (2015)

    Article  Google Scholar 

  40. Y.-G. Han, T. Kusunose, T. Sekino, Synth. Met. 159, 123 (2009)

    Article  Google Scholar 

  41. Q.M. Jia, J.B. Li, L.F. Wang, J.W. Zhu, M. Zheng, Mater. Sci. Eng. A 448, 356 (2007)

    Article  Google Scholar 

  42. X. Zheng, D. Li, C. Feng, X. Chen, Thermochim. Acta. 618, 18 (2015)

    Article  Google Scholar 

  43. U. Szeluga, S. Pusz, B. Kumanek, K. Olszowska, S. Czajkowska, J. Myalski, J. Kubacki, B. Trzebicka, A.F. Borowski, Compos. Sci. Technol. 134, 72 (2016)

    Article  Google Scholar 

  44. M.R. Loos, S.H. Pezzin, S.C. Amico, C.P. Bergmann, L.A.F. Coelho, J. Mater. Sci. 43, 6064 (2008)

    Article  Google Scholar 

  45. F.-L. Jin, S.-J. Park, Polym. Degrad. Stab. 97, 2148 (2012)

    Article  Google Scholar 

  46. J. Zhu, S. Wei, J. Ryu, M. Budhathoki, G. Liang, Z. Guo, J. Mater. Chem. 20, 4937 (2010)

    Article  Google Scholar 

  47. J. Guo, X. Zhang, H. Gu, Y. Wang, X. Yan, D. Ding, J. Long, S. Tadakamalla, Q. Wang, M.a.. Khan, J. Liu, X. Zhang, B.L. Weeks, L. Sun, D.P. Young, S. Wei, Z. Guo, RSC Adv. 4, 36560 (2014)

    Article  Google Scholar 

  48. H.-W. Cui, A. Kowalczyk, D.-S. Li, Q. Fan, Int. J. Adhes. Adhes. 44, 220 (2013)

    Article  Google Scholar 

  49. S. Ghatak, G. Chakraborty, A.K. Meikap, T. Woods, R. Babu, W.J. Blau, J. Appl. Polym. Sci. 119, 1016 (2011)

    Article  Google Scholar 

  50. R. Chan Yu King, F. Roussel, J.-F. Brun, C. Gors, Synth. Met. 162, 1348 (2012)

    Article  Google Scholar 

  51. Q. Zhang, W. Wang, J. Li, J. Zhu, L. Wang, M. Zhu, W. Jiang, J. Mater. Chem. A 1, 12109 (2013)

    Article  Google Scholar 

  52. Z. Qiang, G. Liang, A. Gu, L. Yuan, J. Nanoparticle Res. 16, 2391 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Vinay Khandelwal gratefully acknowledge the Ministry of Human Resource Development (MHRD), Government of India for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Manik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khandelwal, V., Sahoo, S.K., Kumar, A. et al. Study on the effect of carbon nanotube on the properties of electrically conductive epoxy/polyaniline adhesives. J Mater Sci: Mater Electron 28, 14240–14251 (2017). https://doi.org/10.1007/s10854-017-7282-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7282-y

Navigation