Skip to main content
Log in

Three-dimensional multi-layer through-hole filling properties of solderable polymer composites with low-melting-point alloy fillers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel three-dimensional (3D) multi-layer through-hole filling process using solderable polymer composites (SPCs) was developed to overcome several limitations of the conventional 3D package technique. To investigate the multi-layer through-hole filling properties of SPCs, SPCs with functionalized polymer composite and low-melting-point-alloy (LMPA) fillers were formulated, and a multi-layer through-hole filling test was conducted under atmospheric pressure and decompression reflow conditions. The results indicated that the multi-layer through-hole filling assemblies under the atmospheric pressure reflow condition have weak through-hole filling and interlayer interconnection properties because of the weak elimination of residual polymer composite and voids within the through-hole. Meanwhile, the multi-layer through-hole filling assemblies reflowed under the decompression condition showed improved through-hole filling properties because of the favorable elimination of polymer composite and voids within the through-hole and the excellent wetting behavior of molten fillers. The corresponding electrodes between the stacked boards were electrically interconnected by the proper selective wetting behavior of molten LMPA, and the spaces between stacked boards were underfilled by the cured polymer composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.F. Lai, S.W. Li, J.Y. Shih, K.N. Chen, Microelectron. Eng. 88, 3282–3286 (2011)

    Article  Google Scholar 

  2. Y.C. Chan, P.L. Tu, K.C. Hung, Microelectron. Reliab. 41, 1867–1875 (2001)

    Article  Google Scholar 

  3. P. Yang, X. Qin, Microelectron. J. 40, 1235–1243 (2009)

    Article  Google Scholar 

  4. D.H. Kim, K. Athikulwongse, S.K. Lim, Proceedings of IEEE/ACM International Conference on Computer-Aided Design-Digest of Technical Papers (2009), pp. 674–680

  5. M.D. Diop, M. Radji, W. Andre, Y. Blaquiere, A.A. Hamoui, R. Izquierdo, Proceedings of 19th IEEE Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS) (2010), pp. 245–248

  6. S. Spiesshoefer, L. Schaper, Proceedings of 53rd International Conference on Electronic Components and Technology (2003), pp. 631–633

  7. R. Beica, C. Sharbono, T. Ritzdorf, Proceedings of 58th International Conference on Electronic Components and Technology (2008), pp. 577–583

  8. M. Motoyoshi, Proc. IEEE 97, 43–48 (2009)

    Article  Google Scholar 

  9. D.M. Jang, C. Ryu, K.Y. Lee, B.H. Cho, Performance of 57th International Conference on Electronic Components and Technology (2007), pp. 847–852

  10. J.P. Gambino, S.A. Adderly, J.U. Knickerbocker, Microelectron. Eng. 135, 73–106 (2015)

    Article  Google Scholar 

  11. L. Hofmann, R. Ecke, S.E. Schulz, T. Gessner, Microelectron. Eng. 88, 705–708 (2011)

    Article  Google Scholar 

  12. S. Yamamoto, K. Itoi, T. Suemasu, T. Takizawa, Performance of 16th IEEE Annual International Conference on Micro Electro Mechanical Systems (2003), pp. 642–645

  13. Y.K. Ko, H.T. Fujii, Y.S. Sato, C.W. Lee, S. Yoo, Proceedings of 61st IEEE International Conference on Electronic Components and Technology (2011), pp. 2091–2095

  14. S.K. Kang, S.L. Buchwalter, N.C. LaBianca, J. Gelorme, S. Purushothaman, K. Papathomas, M. Poliks, I.E.E.E. Trans, Compon. Packag. Technol. 24, 431–435 (2001)

    Article  Google Scholar 

  15. R.N. Das, F.D. Egitto, V.R. Markovich, Circuit World 34, 3–12 (2008)

    Article  Google Scholar 

  16. J.W. Baek, K.S. Jang, Y.S. Eoma, J.T. Moon, J.M. Kim, J.D. Nam, Microelectron. Eng. 87, 1968–1972 (2010)

    Article  Google Scholar 

  17. J.B. Jullien, H. Fremont, J.Y. Deletage, Microelectron. Reliab. 53, 1597–1601 (2013)

    Article  Google Scholar 

  18. A.S. Cebrian, R. Basler, F. Klunker, M. Zogg, Int. J. Adhes. Adhes. 48, 51–58 (2014)

    Article  Google Scholar 

  19. A.A. Gallo, R. Munamarty, IEEE Trans. Reliab. 44, 362–367 (1995)

    Article  Google Scholar 

  20. J.E. Galloway, B.M. Miles, I.E.E.E. Trans, Compon. Packag. Manuf. Technol. A 20, 274–279 (1997)

    Article  Google Scholar 

  21. Z. Li, X. Shu, Sci. China Phys. Mech. Astron. 56, 624–628 (2013)

    Article  Google Scholar 

  22. A.S. Cebrian, M. Zogg, P. Ermanni, Int. J. Adhes. Adhes. 40, 112–119 (2013)

    Article  Google Scholar 

  23. N.P. Cheremisinoff, Handbook of Industrial Toxicology and Hazardous Materials (CRC Press, New York, 1999), p. 444

    Google Scholar 

  24. A. Lewis, Proceedings of 5th International Conference on Lead Free Electronics and Assemblies (2004), pp. 1–10

  25. K. Banerji, F.D. Alves, R.F. Darveaux, US Patent 5203076 (1993), pp. 4–5

  26. X.R. Guo, W.B. Young, Microelectron. Reliab. 55, 613–622 (2015)

    Article  Google Scholar 

  27. M.K. Schwiebert, W.H. Leong, I.E.E.E. Trans, Compon. Packag. Manuf. Technol. C 19, 133–137 (1996)

    Article  Google Scholar 

  28. J.D. Kish, C. Leng, J. Kelley, J. Hiltner, Y. Zhang, Y. Liu, Atmos. Environ. 79, 561–565 (2013)

    Article  Google Scholar 

  29. M. Takahashi, T. Kawamura, Y. Yamamoto, H. Ohnari, S. Himuro, H. Shakutsui, J. Phys. Chem. B 107, 2171–2173 (2003)

    Article  Google Scholar 

  30. S.D. Beattie, J.R. Dahn, J. Electrochem. Soc. 150, A894–A898 (2003)

    Article  Google Scholar 

  31. N. Saunders, A.P. Miodownik, Bull. Alloys Phase Diagr. 11, 278–287 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and future Planning (2014007164) and Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20134030200350).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongjun Shin or Jong-Min Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.I., Yim, BS., Shin, D. et al. Three-dimensional multi-layer through-hole filling properties of solderable polymer composites with low-melting-point alloy fillers. J Mater Sci: Mater Electron 27, 6223–6231 (2016). https://doi.org/10.1007/s10854-016-4553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4553-y

Keywords

Navigation