Skip to main content
Log in

Magnetic and dielectric properties of Ni0.5Zn0.5Fe2O4/barium titanate (BaTiO3) ceramic composites prepared by an in situ sol–gel method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ferrimagenitc/ferroelectric Ni0.5Zn0.5Fe2O4 (NZFO)/BaTiO3 (BT) ceramic composites (NBSG) are synthesized via an in situ sol–gel process. The formation of the BaTiO3 layer on the Ni–Zn ferrite particles was performed in two steps, the first formation of sol BaTiO3 precursor layer and then heat treatment at high temperature. The morphology and microstructure of the ceramic composites were studied by the field-emission scanning electron microscope, X-ray diffraction measurements are used to demonstrate the phase change with different molar ratio of NZFO:BT, and their magnetic and dielectric properties of the composites have been investigated by a MH loop measurement and RF impedance/material analyzer. Results show that the NZFO particles are well surrounded naturally by the perovskite BT layer which could help to avoid the aggregation of NZFO phase, and also in this structure, the interactions between the two constituent phases endow the ceramic composites with both good magnetic and dielectric properties at high frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.H. Zhang, L. Zhu, Y.L. Dong, W.J. Weng, G.R. Han, N. Ma, P.Y. Du, J. Mater. Chem. 20, 10856–10861 (2010)

    Article  Google Scholar 

  2. Y. Shen, Z.X. Yue, M. Li, C.W. Nan, Adv. Funct. Mater. 15, 1100–1103 (2005)

    Article  Google Scholar 

  3. J.Q. Huang, P.Y. Du, L.X. Hong, Y.L. Dong, M.C. Hong, Adv. Mater. 19, 437–440 (2007)

    Article  Google Scholar 

  4. Y.C. Zhou, H. Wang, L. Wang, K. Yu, Z.D. Lin, L. He, Y.Y. Bai, Mater. Sci. Eng. B 177, 892–896 (2012)

    Article  Google Scholar 

  5. Y.C. Zhou, Y.G. Yao, C.Y. Chen, K. Moon, H. Wang, C.P. Wong, Sci. Rep. 4, 4779 (2014)

    Google Scholar 

  6. C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, J. Appl. Phys. 103, 1–34 (2008)

    Article  Google Scholar 

  7. J. Bennett, A.J. Bell, T.J. Stevenson, R.I. Smith, I. Sterianou, I.M. Reaney, T.P. Comyn, Mater. Lett. 94, 172–175 (2013)

    Article  Google Scholar 

  8. H. Schmid, Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  9. B. Xiao, Y. Tang, G.D. Ma, N. Ma, P.Y. Du, Appl. Phys. A 119, 1291–1300 (2015)

    Article  Google Scholar 

  10. A. Mandal, C.K. Das, J. Appl. Polym. Sci. 131, 39926 (2014)

    Google Scholar 

  11. T.N. Narayanan, B.P. Mandal, A.K. Tyagi, A. Kumarasiri, X.B. Zhan, M.G. Hahm, M.R. Anantharaman, G. Lawes, P.M. Ajayan, Nano Lett. 12, 3025–3030 (2012)

    Article  Google Scholar 

  12. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21–29 (2007)

    Article  Google Scholar 

  13. K.H. Wu, Y.M. Shin, C.C. Yang, W.D. Ho, J.S. Hsu, J. Polym. Sci. Polym. Chem. 41, 2657–2664 (2006)

    Article  Google Scholar 

  14. B.W. Li, Y. Shen, Z.X. Yue, C.W. Nan, J. Appl. Phys. 99, 123909 (2006)

    Article  Google Scholar 

  15. M. Liu, O. Obi, J. Lou, Y.J. Chen, Z.H. Cai, S. Stoute, M. Espanol, M. Lew, X.D. Situ, K.S. Ziemer, V.G. Harris, N.X. Sun, Adv. Funct. Mater. 19, 1826–1831 (2009)

    Article  Google Scholar 

  16. H.C. He, J. Wang, J.P. Zhou, C.W. Nan, Adv. Funct. Mater. 17, 1333–1338 (2007)

    Article  Google Scholar 

  17. R.Z. Liu, Y.Z. Zhao, R.X. Huang, Y.J. Zhao, H.P. Zhou, J. Mater. Chem. 20, 10665–10670 (2010)

    Article  Google Scholar 

  18. G. Yu, F.M. Bai, H.W. Zhang, Adv. Mater. Sci. Eng. 2012, 109856 (2012)

    Google Scholar 

  19. P.S.S.R. Krishnan, Q.M. Ramasse, W.I. Liang, Y.H. Chu, V. Nagarajan, P. Munroe, J. Appl. Phys. 112, 104102 (2012)

    Article  Google Scholar 

  20. A. Testino, L. Mitoseriu, V. Buscaglia, M.T. Buscaglia, I. Pallecchi, A.S. Albuquerque, V. Calzona, D. Marre, A.S. Siri, P. Nanni, J. Eur. Ceram. Soc. 26, 3031 (2006)

    Article  Google Scholar 

  21. B. Xiao, N. Ma, P.Y. Du, J. Mater. Chem. C 1, 6325 (2013)

    Article  Google Scholar 

  22. J.S. Kim, C.L. Cheo, Y.N. Choi, P.W. Jang, J. Appl. Phys. 93, 9263–9270 (2003)

    Article  Google Scholar 

  23. H. Zheng, Y.L. Dong, X. Wang, W.J. Weng, G.R. Han, N. Ma, P.Y. Du, Angew. Chem. Int. Ed. 48, 1–5 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (21101165), Guangdong Innovative Research Team Program (Nos. 2011D052 and KYPT20121228160843692), Shenzhen High Density Electronic Packaging and Device Assembly Key Laboratory (ZDSYS20140509174237196), Shenzhen basic research plan (GJHS20120702091802836 and JCYJ20140610152828685).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengli Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Zheng, Q. & Sun, R. Magnetic and dielectric properties of Ni0.5Zn0.5Fe2O4/barium titanate (BaTiO3) ceramic composites prepared by an in situ sol–gel method. J Mater Sci: Mater Electron 26, 9074–9080 (2015). https://doi.org/10.1007/s10854-015-3593-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3593-z

Keywords

Navigation