Skip to main content
Log in

Design of light weight multi-layered coating of zinc oxide–iron–graphite nano-composites for ultra-wide Bandwidth microwave absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present study focused on the formulation of suitable material combination for good microwave absorption with ultra-wide Bandwidth at minimum coating thickness. For this purpose, a unique materials combination of semiconductor, conductor and magnetic materials has been specifically designed through a simple fabrication method to meet the necessity of enhanced absorption characteristics in the frequency range of 4.0–12.0 GHz. The chosen bulk materials like zinc oxide (ZnO), iron (Fe), and graphite (C) have been subjected to high energy ball planetary mill for fabricating the nano-composites. The impact of milling time on microwave absorption behavior of zinc oxide–iron–graphite nano-composites has been studied. The maximum microwave absorption value of −17.40 dB has been obtained for 15 h milled sample with average grain size of ~10.0 nm for single-layer absorber of coating thickness 3.0 mm with broad Bandwidth of 6.43 GHz (4.0–10.43 GHz). The double-layer absorber has been optimized by multi-layering technique to increase the microwave absorption for less coating thickness. This type of material may be quite useful for radar cross section reduction at C and X-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y.J. Chen, M.S. Cao, T.H. Wang, Q. Wan, Appl. Phys. Lett. 84, 3367 (2004)

    Article  Google Scholar 

  2. K.J. Vinoy, R.M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization (Kluwer Academic Publishers, Boston, 1996)

    Book  Google Scholar 

  3. S.D. Yu, M. Fonin, New J. Phys. 12, 125004 (2010)

    Article  Google Scholar 

  4. X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, Z.D. Zhang, Appl. Phys. Lett. 92, 173117 (2008)

    Article  Google Scholar 

  5. F. Chouit, O. Guellati, S. Boukhezar, A. Harat, M. Guerioune, N. Badi, Nanoscale Res. Lett. 9, 288 (2014)

    Article  Google Scholar 

  6. S. Yang, H. Zhu, D. Yu, Z. Jin, S. Tang, Y. Du, J. Magn. Magn. Mater. 222(1–2), 97 (2000)

    Article  Google Scholar 

  7. H.R. Khan, K. Petrikowski, Mater. Sci. Eng. C 19, 345 (2002)

    Article  Google Scholar 

  8. S. Ge, X. Ma, C. Li, W. Li, J. Magn. Magn. Mater. 1867, 226 (2001)

    Google Scholar 

  9. S. Valizadeh, J.M. George, P. Leisner, L. Hultman, Electrochim. Acta 47, 865 (2001)

    Article  Google Scholar 

  10. H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejakovic, J.W. Yoo, A. Epstein, Appl. Phys. Lett. 84, 589 (2004)

    Article  Google Scholar 

  11. R. Che, L. Peng, X. Duan, Q. Chen, X. Liang, Adv. Mater. 16, 401 (2004)

    Article  Google Scholar 

  12. M. Hotta, M. Hayashi, M.T. Lanagan, D.K. Agrawal, K. Nagata, ISIJ Int. 51, 1766 (2011)

    Article  Google Scholar 

  13. F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)

    Article  Google Scholar 

  14. M.S. Cao, X.L. Shi, X.Y. Fang, H.B. Jin, Z.L. Hou, W. Zhou, Y.J. Chen, Appl. Phys. Lett. 91, 203110 (2007)

    Article  Google Scholar 

  15. M. Mekhnache, A. Drici, L. Saad Hamidech, H. Benzarouk, A. Amara, L. Cattin, J.C. Bernde, M. Guerioune, Superlattices Microstruct. 49, 510 (2011)

    Article  Google Scholar 

  16. X.L. Shi, J. Yuan, W. Zhou, J.L. Rong, M.S. Cao, Chin. Phys. Lett. 24, 2994 (2007)

    Article  Google Scholar 

  17. Y. Zhou, X.L. Shi, J. Yuan, X.Y. Fang, M.S. Cao, Chin. Phys. Lett. 24, 3264 (2007)

    Article  Google Scholar 

  18. Y.Q. Huang, J. Yuan, W.L. Song, B. Wen, X.Y. Fang, M.S. Cao, Chin. Phys. Lett. 27, 027702 (2010)

    Article  Google Scholar 

  19. H.F. Li, Y.H. Huang, G.B. Sun, X.Q. Yan, Y. Yang, J. Wang, Y. Zhang, J. Phys. Chem. C 114, 10088 (2010)

    Article  Google Scholar 

  20. R.F. Zhuo, H.T. Feng, J.T. Chen, D. Yan, J.J. Feng, H.J. Li, B.S. Geng, S. Cheng, X.Y. Xu, P.X. Yan, J. Phys. Chem. C 112, 11767 (2008)

    Article  Google Scholar 

  21. R.F. Zhou, H.T. Feng, Q. Liang, J.Z. Liu, J.T. Chen, D. Yan, J.J. Feng, H.J. Li, S. Cheng, B.S. Geng, X.Y. Xu, J. Wang, Z.G. Wu, P.X. Yan, G.H. Yue, J. Phys. D Appl. Phys. 41, 185405 (2008)

    Article  Google Scholar 

  22. C. Zhou, Q. Fang, F. Yan, W. Wang, K. Wu, Y. Liu, Q. Lv, H. Zhang, Q. Zhang, J. Li, Q. Ding, J. Magn. Magn. Mater. 324, 1720 (2012)

    Article  Google Scholar 

  23. L. Kong, X. Yin, F. Ye, Q. Li, L. Zhang, L. Cheng, J. Phys. Chem. C 117, 2135 (2013)

    Article  Google Scholar 

  24. R. Han, X. Han, L. Qiao, T. Wang, F. Li, Mater. Chem. Phys. 128, 317 (2011)

    Article  Google Scholar 

  25. H. Li, J. Wanga, Y. Huanga, X. Yana, J. Qia, J. Liub, Y. Zhang, Mater. Sci. Eng. B 175, 81 (2010)

    Article  Google Scholar 

  26. X.G. Liu, D.Y. Geng, H. Meng, P.J. Shang, Z.D. Zhang, Appl. Phys. Lett. 92, 173117 (2008)

    Article  Google Scholar 

  27. A.M. Nicolson, G.F. Ross, IEEE Trans. Instrum. Meas. 19, 377 (1970)

    Article  Google Scholar 

  28. J.F. Yan, T.G. You, Z.Y. Zhang, J.X. Tian, J.N. Yun, W. Zhao, Chin. Phys. B 20, 048102 (2011)

    Article  Google Scholar 

  29. V.K. Sharma, M. Najim, A.K. Srivastava, G.D. Varma, J. Magn. Magn. Mater. 324, 683 (2012)

    Article  Google Scholar 

  30. Q. Zeng, I. Baker, Intermetallics 14, 396 (2006)

    Article  Google Scholar 

  31. R.A. Varin, J. Bystrzycki, A. Calka, Intermetallics 7, 917 (1999)

    Article  Google Scholar 

  32. M. Mhadhbi, M. Khitouni, L. Escoda, J.J. Sunol, M. Dammak, J. Nanomater. (2010). doi:10.1155/2010/712407

    Google Scholar 

  33. R.M. German, Powder Metallurgy Science (Metal Powder Industries Federation, Princeton, 1994)

  34. D.D. Mishra, V. Agarwala, R.C. Agarwala, Part. Sci. Technol. 31, 313 (2012)

    Article  Google Scholar 

  35. R. Sharma, R.C. Agarwala, V. Agarwala, Mater. Lett. 62, 2233 (2008)

    Article  Google Scholar 

  36. J.L. Snoek, Nature 160, 90 (1947)

    Article  Google Scholar 

  37. R. Panwar, P. Smitha, V. Agarwala, D. Singh, Adv. Sci. Lett. 20, 1425 (2014)

    Article  Google Scholar 

  38. R. Panwar, V. Agarwala, D. Singh, Ceram. Int. 41, 2924 (2015)

    Article  Google Scholar 

  39. M. Najim, P. Smitha, V. Agarwala, D. Singh, Adv. Sci. Lett. 20, 1490 (2014)

    Article  Google Scholar 

  40. L.C. Folgueras, M.C. Rezende, J. Mater. Res. 11, 245 (2008)

    Article  Google Scholar 

  41. R. Panwar, V. Agarwala, D. Singh, AIP Conf. Proc. 1620, 406 (2014)

    Article  Google Scholar 

  42. R. Panwar, S. Puthucheri, V. Agarwala, D. Singh, J. Electromagn. Waves Appl. (2015). doi:10.1080/09205071.2015.1044125

    Google Scholar 

  43. R. Dosoudil, M. Usakova, J. Franek, A. Gruskova, J. Slama, IEEE Trans. Magn. 46, 436 (2010)

    Article  Google Scholar 

  44. V.T. Truong, S.Z. Riddell, R.F. Muscat, Mater. Sci. 33, 4971 (1998)

    Article  Google Scholar 

  45. R.C. Parida, D. Singh, N.K. Agrawal, Indian J. Radio Space Phys. 36, 145 (2007)

    Google Scholar 

  46. A. Kumar, Design and Development of Coating for Radar Absorbing Materials at X-band (Ph.D. Thesis, Indian Institute of Technology Roorkee, India, 2013)

Download references

Acknowledgments

The authors are thankful to Defense Research and Development Organization (DRDO, Extramural Research Grant, under grant no. ERIP/ER/1100411/M/01/1503), Delhi, India for providing the funds for this work. Mohd. Najim is thankful to MHRD, India for giving fellowship grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najim, M., Smitha, P., Agarwala, V. et al. Design of light weight multi-layered coating of zinc oxide–iron–graphite nano-composites for ultra-wide Bandwidth microwave absorption. J Mater Sci: Mater Electron 26, 7367–7377 (2015). https://doi.org/10.1007/s10854-015-3366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3366-8

Keywords

Navigation