Skip to main content
Log in

Different surface properties of l-arginine functionalized silver nanoparticles and their influence on the conductive and adhesive properties of nanosilver films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The green synthesis of silver nanoparticles using l-arginine as protective and reductive agent has been investigated with -silver nitrate and silver acetate as silver precursors-by a facile and environmentally benign “single-step one-pot approach”. Silver nanoparticles synthesized from silver nitrate and silver acetate were named AgNP-1 and AgNP-2, respectively. AgNP-1 and AgNP-2 have similar morphology and size distribution, and both are water dispersible and ultra-stable. However, the nanosilver films made by the two kinds of conductive inks showed very distinct conductive and adhesive properties. FT-IR and X-ray photoelectron spectroscopy were used to characterize the surface properties of silver nanoparticles—the bonding types between silver nanocrystal and l-arginine -which were closely related to the conductive and adhesive properties of nanosilver films. Besides, the probable complexation mechanism of Ag ions with l-arginine and their subsequent reduction to Ag nanoparticles were studied. Finally, stable aqueous nanosilver dispersion with concentration of 20 wt% was produced to fabricate patterns by blade coating. The resistivity of nanosilver films sintered at 170 °C for 60 min is 3.8 μΩ cm and its adhesion can reach 4A, which facilitate their use in printed electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K. Ankireddy, S. Vunnam, J. Kellar, W. Cross, J. Mater. Chem. C 1, 572 (2013)

    Article  Google Scholar 

  2. D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Chem. Rev. 110, 389 (2010)

    Article  Google Scholar 

  3. J.S. Kang, H.S. Kim, J. Ryu, H.T. Hahn, S. Jang, J.W. Joung, J. Mater. Sci. Mater. Electron. 21, 1213–1220 (2010)

    Article  Google Scholar 

  4. A. Desireddy, B.E. Conn, J.S. Guo, B. Yoon, R.N. Barnett, B.M. Monahan, K. Kirschbaum, W.P. Griffith, R.L. Whetten, U. Landman, T.P. Bigioni, Nature 501, 399 (2013)

    Article  Google Scholar 

  5. S. Eckhardt, P.S. Brunetto, J. Gagnon, M. Priebe, B. Giese, K.M. Fromm, Chem. Rev. 113, 4708 (2013)

    Article  Google Scholar 

  6. X.Q. Zhou, W. Li, M.L. Wu, S. Tang, D.Z. Liu, Appl. Surf. Sci. 292, 537 (2014)

    Article  Google Scholar 

  7. L. Polavarapu, K.K. Manga, K. Yu, P.K. Ang, H.D. Cao, J. Balapanuru, K.P. Loh, Q.H. Xu, Nanoscale 3, 2268 (2011)

    Article  Google Scholar 

  8. Y. Wu, Y. Li, B.S. Ong, J. Am. Chem. Soc. 129, 1862–1863 (2007)

    Article  Google Scholar 

  9. R. Shankar, L. Groven, A. Amert, K.W. Whites, J.J. Kellar, J. Mater. Chem. 21, 10871 (2011)

    Article  Google Scholar 

  10. P. Raveendran, J. Fu, S.L. Wallen, J. Am. Chem. Soc. 125, 13940 (2003)

    Article  Google Scholar 

  11. B.W. Yang, Z.M. Liu, Z.Y. Guo, W. Zhang, M.M. Wan, X.C. Qin, H.Q. Zhong, Appl. Surf. Sci. 316, 22 (2014)

    Article  Google Scholar 

  12. S. Singh, A. Bharti, V.K. Meena, J. Mater. Sci. Mater. Electron. 26, 3638 (2015)

    Article  Google Scholar 

  13. Qu Haiou, Hui Ma, W.L. Zhou, C.J. O’Connor, Inorg. Chim. Acta 389, 60 (2012)

    Article  Google Scholar 

  14. W.D. Yang, C.Y. Liu, Z.Y. Zhang, Y. Liu, S.D. Nie, J. Mater. Sci. Mater. Electron. 24, 628 (2013)

    Article  Google Scholar 

  15. P.P. Pillai, S. Huda, B. Kowalczyk, B.A. Grzybowski, J. Am. Chem. Soc. 135, 6392 (2013)

    Article  Google Scholar 

  16. Z.Y. Zhon, S. Patskovskyy, P. Bouvrette, J.H.T. Luong, A. Gedanken, J. Phys. Chem. B 108, 4046 (2004)

    Article  Google Scholar 

  17. L.X. Mo, D.Z. Liu, W. Li et al., Appl. Surf. Sci. 257, 5746 (2011)

    Article  Google Scholar 

  18. S. Singh, A. Bharti, V.K. Meena, J. Mater. Sci. Mater. Electron. 25, 3747 (2014)

    Article  Google Scholar 

  19. M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, S. Magdassi, ACS Nano 5, 3354 (2011)

    Article  Google Scholar 

  20. Y. Negishi, Y. Takasugi, S. Sato, H. Yao, K. Kimura, T. Tsukuda, J. Am. Chem. Soc. 126, 6518 (2004)

    Article  Google Scholar 

  21. B. Hu, S.-B. Wang, K. Wang, M. Zhang, S.-H. Yu, J. Phys. Chem. C 112, 11169 (2008)

    Article  Google Scholar 

  22. Q.Z. Wu, H.Q. Cao, Q.Y. Luan, J.Y. Zhang, Z. Wang, J.H. Warner, A.A.R. Watt, Inorg. Chem. 47, 5882 (2008)

    Article  Google Scholar 

  23. M.J. Fernandez-Merino, S. Villar-Rodil, J.I. Paredes, P. Solís-Fernández, L. Guardia, R. García, A. Martínez-Alonso, J.M.D. Tascón, Carbon 63, 30 (2013)

    Article  Google Scholar 

  24. D. Sardar, B. Naskar, A. Sanyal, S.P. Moulik, T. Bala, RSC Adv. 4, 3521 (2014)

    Article  Google Scholar 

  25. Y.-C. Chen, J.N. Cheng, J. Cheng, S. Cheng, J. Mater. Sci. Mater. Electron. 26, 2775 (2015)

    Article  Google Scholar 

  26. D. Kim, S. Jeong, B.K. Park, J. Moon, Appl. Phys. Lett. 89, 264101 (2006)

    Article  Google Scholar 

  27. R. Botta, A. Rajanikanth, C. Bansal, Chem. Phys. Lett. 618, 14 (2015)

    Article  Google Scholar 

  28. G.J.H. Melvin, Q.-Q. Ni, Y. Suzuki, T. Natsuki, J. Mater. Sci. 49, 5199 (2014)

    Article  Google Scholar 

  29. J.S. Stevens, A.C. de Luca, M. Pelendritis, G. Terenghi, S. Downes, S.L.M. Schroeder, Surf. Interface Anal. 45, 1238 (2013)

    Article  Google Scholar 

  30. T. Wang, L.X. Wang, D.L. Wu, W. Xia, H.Y. Zhao, D.Z. Jia, J. Mater. Chem. A 2, 8352 (2014)

    Article  Google Scholar 

  31. K.J. Lee, Y. Lee, I.-K. Shim, J. Joung, Y.S. Oh, J. Colloid Interface Sci. 304, 92 (2006)

    Article  Google Scholar 

  32. B. Adhikari, A. Banerjee, Chem. Eur. J. 16, 13698 (2010)

    Article  Google Scholar 

  33. Y. Chang, D.Y. Wang, Y.L. Tai, Z.G. Yang, J. Mater. Chem. 22, 25296 (2012)

    Article  Google Scholar 

  34. K. Woo, D. Kim, J.S. Kim, S. Lim, J. Moon, Langmuir 25, 429 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank for the financial support of the Doctoral Programs Foundation of China (No. 20110032110018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueqin Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 252 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, F., Liu, D., Wang, T. et al. Different surface properties of l-arginine functionalized silver nanoparticles and their influence on the conductive and adhesive properties of nanosilver films. J Mater Sci: Mater Electron 26, 6781–6786 (2015). https://doi.org/10.1007/s10854-015-3289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3289-4

Keywords

Navigation