Skip to main content
Log in

A novel scheme to obtain tunable fluorescent colors based on electrospun composite nanofibers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Europium complexes Eu(BA)3phen (BA = benzoic acid, phen = 1,10-phenanthroline) and Terbium complexes Tb(BA)3phen are incorporated into polyvinyl pyrrolidone (PVP) and electrospun into [Eu(BA)3phen + Tb(BA)3phen]/PVP composite nanofibers. The morphologies and properties of the final products are investigated via scanning electron microscopy, energy dispersive spectrometry,X-ray powder diffractometry, fluorescence spectroscopy, Fourier-transform infrared spectroscopy and thermogravimetry. The diameter of the composite nanofibers is 431.55 ± 3.14 nm. The obtained composite nanofibers are amorphous in structure and stable below 220 °C. By adjusting the ratio of Eu(BA)3phen to Tb(BA)3phen complexes, the fluorescence color of composite nanofibers can be tuned from red to yellow, yellow green, and green under the excitation of 276-nm single-wavelength ultraviolet light. Besides, the fluorescence lifetime of Eu3+ ions in composite nanofibers is extended gradually, while that of Tb3+ ions is decreased slowly with increase of Tb(BA)3phen content. The novel color-tunable composite nanofibers have potential applications in the fields of optical devices, color displays and sensor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Zhu, Z.P. Ci, Q. Wang, Y. Wen, S.C. Han, Y.R. Shi, S.Y. Xin, Y.H. Wang, J. Mater. Chem. C 1, 4490–4496 (2013)

    Article  Google Scholar 

  2. D.M. Yang, G.G. Li, X.J. Kang, Z.Y. Cheng, P.A. Ma, C. Peng, H.Z. Lian, C.X. Li, L. Jun, Nanoscale 4, 3450–3459 (2012)

    Article  Google Scholar 

  3. J.F. Sun, Z.P. Lian, G.Q. Shen, D.Z. Shen, RSC Adv. 3, 18395–18405 (2013)

    Article  Google Scholar 

  4. M.M. Jiao, Y.C. Jia, W. Lü, W.Z. Lv, Q. Zhao, B.Q. Shao, H.P. You, Dalton Trans. 46, 3202–3209 (2014)

    Article  Google Scholar 

  5. C. Wang, E.Y. Yan, G.M. Li, Z.Y. Sun, S.H. Wang, Y.B. Tong, W.W. Li, Y. Xin, Z.H. Huang, P.F. Yan, Synth. Met. 160, 1382–1386 (2010)

    Article  Google Scholar 

  6. S.P. Anthony, S.M. Draper, J. Phys. Chem. C 114, 11708–11716 (2010)

    Article  Google Scholar 

  7. X.C. Zhu, S.L. Zhou, S.W. Wang, Y. Wei, L.J. Zhang, F.H. Wang, S.Y. Wang, Z.J. Feng, Chem. Commun. 48, 12020–12022 (2012)

    Article  Google Scholar 

  8. Z.L. Fu, X.J. Wang, Y.M. Yang, Z.J. Wu, D. Duan, X.H. Fu, Dalton Trans. 43, 2819–2827 (2014)

    Article  Google Scholar 

  9. G. Ren, S. Zeng, J. Hao, J. Phys. Chem. C 115, 20141–20147 (2011)

    Article  Google Scholar 

  10. Z.Q. Wang, Y. Yang, Y.J. Cui, Z.Y. Wang, G.D. Qian, J. Alloys. Compd. 510, L5–L8 (2012)

    Article  Google Scholar 

  11. K. Liu, Y.H. Zheng, G. Jia, M. Yang, Y.H. Song, N. Guo, H.P. You, J. Solid State Chem. 183, 2309–2316 (2010)

    Article  Google Scholar 

  12. L.B. Huang, L.H. Cheng, H.Q. Yu, L. Zhou, J.S. Sun, H.Y. Zhong, X.P. Li, J.S. Zhang, Y. Tian, Y.F. Zheng, T.T. Yu, J. Wang, B.J. Chen, Phys. Rev. B Condens. Matter 406, 2745–2749 (2011)

    Article  Google Scholar 

  13. H.H. Wang, P. He, H.G. Yan, M.L. Gong, Sens. Actuators B Chem. 156, 6–11 (2011)

    Article  Google Scholar 

  14. J.L. Yuan, G.L. Wang, J. Fluoresc. 15, 559–568 (2005)

    Article  Google Scholar 

  15. K.S.V. Krishna Rao, H.G. Liu, Y.I. Lee, Appl. Spectrosc. Rev. 45, 409–446 (2010)

    Article  Google Scholar 

  16. V.I. Verlan, M.S. Iovu, I. Culeac, Y. Nistor, C.I. Turta, V.E. Zubareva, J. Non-Cryst. Solids 357, 1004–1007 (2011)

    Article  Google Scholar 

  17. G. Kaur, Y. Dwivedi, S.B. Rai, Opt. Commun. 283, 3441–3447 (2010)

    Article  Google Scholar 

  18. M. Lu, Y.M. Yao, Y. Zhang, Q. Shen, Dalton Trans. 39, 9530–9537 (2010)

    Article  Google Scholar 

  19. D. Liu, Z.G. Wang, RSC Adv. 2, 10085–10090 (2012)

    Article  Google Scholar 

  20. Z.Y. Zhang, C.L. Shao, X.H. Li, Y.Y. Sun, M.Y. Zhang, J.B. Mu, P. Zhang, Z.C. Guo, Y.C. Liu, Nanoscale 5, 606–618 (2013)

    Article  Google Scholar 

  21. Z.Y. Liu, D.D. Sun, P. Guo, J.O. Leckie, Nano Lett. 7, 1081–1085 (2007)

    Article  Google Scholar 

  22. P. Gupta, G.L. Wilkes, Polymer 44, 6353–6359 (2003)

    Article  Google Scholar 

  23. M.Y. Zhang, C.L. Shao, J.B. Mu, X. Huang, Z.Y. Zhang, Z.C. Guo, P. Zhang, Y.C. Liu, J. Mater. Chem. 22, 577–584 (2012)

    Article  Google Scholar 

  24. A. Babel, D. Li, Y.N. Xia, S.A. Jenekhe, Macromolecules 38, 4705–4711 (2005)

    Article  Google Scholar 

  25. W.W. Ma, X.T. Dong, J.X. Wang, W.S. Yu, G.X. Liu, J. Mater. Sci. 48, 2557–2565 (2013)

    Article  Google Scholar 

  26. M. Bashouti, W. Salalha, M. Brumer, E. Zussman, E. Lifshitz, Chem. Phys. Chem. 7, 102–106 (2006)

    Google Scholar 

  27. Q.L. Ma, J.X. Wang, X.T. Dong, W.S. Yu, G.X. Liu, J. Xu, J. Mater. Chem. 22, 14438–14442 (2012)

    Article  Google Scholar 

  28. D. Li, X.T. Dong, W.S. Yu, J.X. Wang, G.X. Liu, J. Mater. Sci. Mater. Elctron. 24, 3041–3048 (2013)

    Article  Google Scholar 

  29. D. Farrar, K. Ren, D. Cheng, S. Kim, W. Moon, W.L. Wilson, J.E. West, S.M. Yu, Adv. Mater. 23, 3954–3958 (2011)

    Article  Google Scholar 

  30. H.G. Yu, H.D. Wang, Y. Li, L. Zhou, Y.B. Wu, B.J. Chen, P. Li, J. Nanosci. Nanotechnol. 14, 3914–3918 (2014)

    Article  Google Scholar 

  31. S.B. Meshkova, J. Fluoresc. 10, 333–337 (2000)

    Article  Google Scholar 

  32. H. Zhang, H.W. Song, H.Q. Yu, S.W. Li, X. Bai, G.H. Pan, Q.L. Dai, T. Wang, W.L. Li, S.Z. Lu, X.G. Ren, H.F. Zhao, X.G. Kong, Appl. Phys. Lett. 90, 103103-1–103103-3 (2007)

  33. R. Bonzanini, D.T. Dias, E.M. Girotto, E.C. Muniz, M.L. Baesso, J.M.A. Caiut, Y. Messaddeq, S.J.L. Ribeiro, A.C. Bento, A.F. Rubira, J. Lumin. 117, 61–67 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (NSFC 50972020, 51072026), Specialized Research Fund for the Doctoral Program of Higher Education (20102216110002,20112216120003), the Science and Technology Development Planning Project of Jilin Province (Grant Nos. 20130101001JC, 20070402, 20060504), the Research Project of Science and Technology of Department of Education of Jilin Province “11th 5-years plan” (Grant Nos. 2010JYT01), Key Research Project of Science and Technology of Ministry of Education of China (Grant No. 207026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangting Dong or Jinxian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Ma, Q., Dong, X. et al. A novel scheme to obtain tunable fluorescent colors based on electrospun composite nanofibers. J Mater Sci: Mater Electron 26, 336–344 (2015). https://doi.org/10.1007/s10854-014-2405-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-014-2405-1

Keywords

Navigation