Skip to main content

Advertisement

Log in

Melamine-based polyol containing phosphonate and alkynyl groups and its application in rigid polyurethane foam

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The rapid depletion of energy resources is the most serious challenge facing humanity today. Energy consumption by buildings is the largest component of energy consumption, and most of it is in the form of heat loss. Therefore, many buildings use rigid polyurethane foam (PUF) as thermal insulation material to effectively reduce heat loss. However, the greatest disadvantage of PUF is its high flammability. In this work, to reduce the risk of fire caused by PUF, melamine-based polyol containing phosphonate and alkynyl groups (MF3.5 and MB3F3) is synthesized and used to improve the flame retardancy of PUF by replacing common polyether polyol. The effects of MF3.5 and MB3F3 on the physical and mechanical properties, cell morphology, thermal stability and flame retardancy of PUF are systematically studied. The research results show that the flame-retardant polyols have no effect on the thermal insulation properties of PUF, but result in a slight decrease in compressive strength. Thermogravimetric analysis proves that MF3.5 and MB3F3 can increase the temperature of the maximum mass loss rate and reduce the maximum mass loss rate, and significantly increase the char yield at 800 °C. The limiting oxygen index (LOI) value is increased to 24.3%. Cone calorimetry experiments show that MB3F3 reduces the peak heat release rate and total heat release by 28.2% and 30.5%, respectively. Vertical combustion tests show that the average burning rate of the flame-retardant PUF is much slower, and melt-dripping behavior is eliminated. The flame retardancy of PUF is improved mainly through a condensed phase mechanism.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Perez-Lombard L, Ortiz J, Pout C (2008) A review on buildings energy consumption information. Energy Build 40:394–398

    Article  Google Scholar 

  2. Allouhi A, El Fouih Y, Kousksou T, Jamil A, Zeraouli Y, Mourad Y (2015) Energy consumption and efficiency in buildings: current status and future trends. J Clean Prod 109:118–130

    Article  Google Scholar 

  3. Huberman N, Pearlmutter D (2008) A life-cycle energy analysis of building materials in the Negev desert. Energy Build 40:837–848

    Article  Google Scholar 

  4. Cai WG, Wu Y, Zhong Y, Ren H (2009) China building energy consumption: situation, challenges and corresponding measures. Energy Policy 37:2054–2059

    Article  Google Scholar 

  5. Al-Homoud MS (2005) Performance characteristics and practical applications of common building thermal insulation materials. Build Environ 40:353–366

    Article  Google Scholar 

  6. Zhang C, Bhoyate S, Ionescu M, Kahol PK, Gupta RK (2018) Highly flame retardant and bio-based rigid polyurethane foams derived from orange peel oil. Polym Eng Sci 58:2078–2087

    Article  CAS  Google Scholar 

  7. Xu ZB, Tang XL, Zheng JY (2008) Thermal stability and flame retardancy of rigid polyurethane foams/organoclay nanocomposites. Polym-Plast Technol Eng 47:1136–1141

    Article  CAS  Google Scholar 

  8. Ding HY, Wang JF, Liu J, Xu YZ, Chen RQ, Wang CP, Chu FX (2015) Preparation and properties of a novel flame retardant polyurethane quasi-prepolymer for toughening phenolic foam. J Appl Polym Sci 132:42424

    Google Scholar 

  9. Visakh PM, Semkin AO, Rezaev IA, Fateev AV (2019) Review on soft polyurethane flame retardant. Constr Build Mater 227:116673

    Article  CAS  Google Scholar 

  10. Bhoyate S, Ionescu M, Kahol PK, Chen J, Mishra SR, Gupta RK (2018) Highly flame-retardant polyurethane foam based on reactive phosphorus polyol and limonene-based polyol. J Appl Polym Sci 135:46224

    Article  Google Scholar 

  11. Kirpluks M, Cabulis U, Zeltins V, Stiebra L, Avots A (2014) Rigid Polyurethane foam thermal insulation protected with mineral intumescent mat. Autex Res J 14:259–269

    Article  Google Scholar 

  12. Thirumal M, Khastgir D, Nando GB, Naik YP, Singha NK (2010) Halogen-free flame retardant PUF: effect of melamine compounds on mechanical, thermal and flame retardant properties. Polym Degrad Stabil 95:1138–1145

    Article  CAS  Google Scholar 

  13. Zhu H, Xu SA (2019) Synthesis and properties of rigid polyurethane foams synthesized from modified urea-formaldehyde resin. Constr Build Mater 202:718–726

    Article  CAS  Google Scholar 

  14. Wang SP, Chen HX, Zhang LH (2014) Thermal decomposition kinetics of rigid polyurethane foam and ignition risk by a hot particle. J Appl Polym Sci 131:39359

    Article  Google Scholar 

  15. Fournier D, De Geest BG, Du Prez FE (2009) On-demand click functionalization of polyurethane films and foams. Polymer 50:5362–5367

    Article  CAS  Google Scholar 

  16. Chiu SH, Wang WK (1998) Dynamic flame retardancy of polypropylene filled with ammonium polyphosphate, pentaerythritol and melamine additives. Polymer 39:1951–1955

    Article  CAS  Google Scholar 

  17. Chen MJ, Shao ZB, Wang XL, Chen L, Wang YZ (2012) Halogen-free flame-retardant flexible polyurethane foam with a novel nitrogen-phosphorus flame retardant. Ind Eng Chem Res 51:9769–9776

    Article  CAS  Google Scholar 

  18. Horacek H, Grabner R (1996) Advantages of flame retardants based on nitrogen compounds. Polym Degrad Stabil 54:205–215

    Article  CAS  Google Scholar 

  19. Saihi D, Vroman I, Giraud S, Bourbigot S (2005) Microencapsulation of ammonium phosphate with a polyurethane shell part 1: coacervation technique. React Funct Polym 64:127–138

    Article  CAS  Google Scholar 

  20. Saihi D, Vroman I, Giraud S, Bourbigot S (2006) Microencapsulation of ammonium phosphate with a polyurethane shell. Part II. Interfacial polymerization technique. React Funct Polym 66:1118–1125

    Article  CAS  Google Scholar 

  21. Lorenzetti A, Modesti M, Besco S, Hrelja D, Donadi S (2011) Influence of phosphorus valency on thermal behaviour of flame retarded polyurethane foams. Polym Degrad Stabil 96:1455–1461

    Article  CAS  Google Scholar 

  22. Lubczak J, Chmiel-Bzukiewicz E, Duliban J, Glowacz-Czerwonka D, Lubczak R, Lukasiewicz B, Zarzyka I, Lodyga A, Tynski P, Koziol M, Majerczyk Z, Minda-Data D (2014) Polyurethane foams with 1,3,5-triazine ring of improved thermal stability. Przem Chem 93:1690–1697

    CAS  Google Scholar 

  23. Chmiel E, Lubczak J, Stagraczynski R (2017) Modification of polyurethane foams with 1,3,5-triazine ring and boron. Macromol Res 25:317–324

    Article  CAS  Google Scholar 

  24. Lubczak J, Lukasiewicz B (2012) Oligoetherols and polyurethane foams with 1,3,5-triazine ring and boron atoms. Polymer 57:819–829

    CAS  Google Scholar 

  25. Wang C, Wu YC, Li YC, Shao Q, Yan XR, Han C, Wang Z, Liu Z, Guo ZH (2018) Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. Polym Adv Technol 29:668–676

    Article  CAS  Google Scholar 

  26. Wu NJ, Li XT (2014) Flame retardancy and synergistic flame retardant mechanisms of acrylonitrile-butadiene-styrene composites based on aluminum hypophosphite. Polym Degrad Stabil 105:265–276

    Article  CAS  Google Scholar 

  27. Brehme S, Schartel B, Goebbels J, Fischer O, Pospiech D, Bykov Y, Döring M (2011) Phosphorus polyester versus aluminium phosphinate in poly(butyleneterephthalate) (PBT): flame retardancy performance and mechanisms. Polym Degrad Stabil 96:875–884

    Article  CAS  Google Scholar 

  28. Li JW, Zeng XD, Kong DZ, Xu H, Zhang LP, Zhong Y, Sui XF, Mao ZP (2018) Synergistic effects of a novel silicon-containing triazine charring agent on the flame-retardant properties of poly(ethylene terephthalate)/hexakis (4-phenoxy)cyclotriphosphazene composites. Polym Compos 39:858–868

    Article  CAS  Google Scholar 

  29. Li B, Xu MJ (2006) Effect of a novel charring-foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym Degrad Stabil 91:1380–1386

    Article  CAS  Google Scholar 

  30. Shi L, Li ZM, Xie BH, Wang JH, Tian CR, Yang MB (2006) Flame retardancy of different-sized expandable graphite particles for high-density rigid polyurethane foams. Polym Int 55:862–871

    Article  CAS  Google Scholar 

  31. Hu XM, Wang DM (2013) Enhanced fire behavior of rigid polyurethane foam by intumescent flame retardants. J Appl Polym Sci 129:238–246

    Article  CAS  Google Scholar 

  32. Chen CK, Zhao XL, Shi CL, Chen J (2018) Synergistic effect between carbon nanoparticle and intumescent flame retardant on flammability and smoke suppression of copolymer thermoplastic polyurethane. J Mater Sci 53:6053–6064. https://doi.org/10.1007/s10853-017-1970-0

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grants from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiyu He or Xiangmei Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Gregory Rutledge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, D., Yang, J., He, J. et al. Melamine-based polyol containing phosphonate and alkynyl groups and its application in rigid polyurethane foam. J Mater Sci 56, 870–885 (2021). https://doi.org/10.1007/s10853-020-05266-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05266-2

Navigation