Skip to main content
Log in

Cation-adsorption-assisted Ni3S2/carbon nanowalls composites with three-dimensional interconnected porous structures for high-performance lithium-ion battery anodes

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal sulfide/carbon composite reveals to be a prospective electrode material for lithium-ion batteries due to the synergy of the two components, and their structure greatly determines the electrochemical performance. We herein have successfully fabricated an in situ encapsulation of Ni3S2 nanoparticles into carbon nanowalls (Ni3S2/CNWs) with three-dimensional interconnected porous structures, which are synthesized assisted by cation adsorption and following hydrothermal process. The abundant mesoporous carbon nanowalls are used as both conductive matrix and protective layer to alleviate the volume change of Ni3S2. Benefiting from the superior theoretical capacity of Ni3S2 and unique structure of CNWs, Ni3S2/CNWs-1 anodes show the high discharge capacity of 906 mAh g−1 at 200 mA g−1 after cycling 200 times, outstanding rate capacity of 567 mAh g−1 at 5 A g−1 and super-long cycling life of 666 mAh g−1 at 2 A g−1 after cycling 1000 times. More importantly, the button-type full cells based on Ni3S2/CNWs-1 anodes and LiFePO4 cathodes present excellent cycling stability and practicality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Wu N, Yang Y, Jia T, Li T, Li F, Wang Z (2020) Sodium-tin metal-organic framework anode material with advanced lithium storage properties for lithium-ion batteries. J Mater Sci 55:6030–6036. https://doi.org/10.1007%2Fs10853-020-04436-6

    Article  CAS  Google Scholar 

  2. Shuang W, Kong L, Zhong M, Wang D, Liu J, Bu XH (2018) Rational design of Co embedded N, S-codoped carbon nanoplates as anode materials for high performance lithium-ion batteries. Dalton Trans 47:12385–12392

    Article  CAS  Google Scholar 

  3. Yu XW, Manthiram A (2018) Electrode-electrolyte interfaces in lithium-based batteries. Energy Environ Sci 11:527–543

    Article  CAS  Google Scholar 

  4. Meng L, Guo R, Li F, Ma Y, Peng J, Zhao J, Sang Z, Li T, Luo Y, Lu Y, Sun X (2020) Hierarchical porous LixV2O4/C anode assembled with nanoflake for high-performance lithium-ion battery. J Mater Sci 55:5522–5533. https://doi.org/10.1007/s10853-020-04388-x

    Article  CAS  Google Scholar 

  5. Liu Y, Zhong M, Kong L, Li A, Sun X, Wang D, Bu XH (2019) Fe1−xS/nitrogen and sulfur co-doped carbon composite derived from a nanosized metal-organic framework for high-performance lithium-ion batteries. Inorg Chem Front 6:50–56

    Article  CAS  Google Scholar 

  6. Duan W, Yan W, Yan X, Munakata H, Jin Y, Kanamura K (2015) Synthesis of nanostructured Ni3S2 with different morphologies as negative electrode materials for lithium ion batteries. J Power Sources 293:706–711

    Article  CAS  Google Scholar 

  7. Geng H, Kong SF, Wang Y (2014) NiS nanorod-assembled nanoflowers grown on graphene: morphology evolution and Li-ion storage applications. J Mater Chem A 2:15152–15158

    Article  CAS  Google Scholar 

  8. Lin YM, Qiu ZZ, Li DZ, Ullah S, Hai Y, Xin HL, Liao WD, Yang B, Fan HS, Xu J, Zhu CZ (2018) NiS2@CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries. Energy Storage Mater 11:67–74

    Article  Google Scholar 

  9. Jin RC, Zhou JH, Guan YS, Liu H, Chen G (2014) Mesocrystal Co9S8 hollow sphere anodes for high performance lithium ion batteries. J Mater Chem A 2:13241–13244

    Article  CAS  Google Scholar 

  10. Wang Y, Niu YB, Li CM (2017) The effect of the morphologies of Ni3S2 anodes on the performance of lithium-ion batteries. ChemSel 2:4445–4451

    CAS  Google Scholar 

  11. Zhang S, Lin R, Yue W, Niu F, Ma J, Yang X (2017) Novel synthesis of metal sulfides-loaded porous carbon as anode materials for lithium-ion batteries. Chem Eng J 314:19–26

    Article  CAS  Google Scholar 

  12. Li D, Li X, Hou X, Sun X, Liu B, He D (2014) Building a Ni3S2 nanotube array and investigating its application as an electrode for lithium ion batteries. Chem Commun 50:9361–9364

    Article  CAS  Google Scholar 

  13. Du JM, Kang DJ (2007) A shape-controlled method to functionalize multiwalled carbon nanotubes with Ni3S2. Inorg Chem 46:10307–10311

    Article  CAS  Google Scholar 

  14. Wu XY, Li SM, Xu YY, Wang B, Liu JH, Yu M (2019) Hierarchical heterostructures of NiO nanosheet arrays grown on pine twig-like beta-NiS@Ni3S2 frameworks as free-standing integrated anode for high-performance lithium-ion batteries. Chem Eng J 356:245–254

    Article  CAS  Google Scholar 

  15. Jiang JL, Ma C, Yang YB, Ding JJ, Ji HM, Shi SJ, Yang G (2018) Synergetic interface between NiO/Ni3S2 nanosheets and carbon nanofiber as binder-free anode for highly reversible lithium storage. Appl Surf Sci 441:232–238

    Article  CAS  Google Scholar 

  16. Guerra A, Achour A, Vizireanu S, Dinescu G, Messaci S, Hadjersi T, Boukherroub R, Coffinier Y, Pireaux JJ (2019) ZnO/carbon nanowalls shell/core nanostructures as electrodes for supercapacitors. Appl Surf Sci 481:926–932

    Article  CAS  Google Scholar 

  17. Kim AY, Ardhi REA, Liu G, Kim JY, Shin HJ, Byun D, Lee JK (2019) Hierarchical hollow dual Core-Shell carbon nanowall-encapsulated p–n SnO/SnO2 heterostructured anode for high-performance lithium-ion-based energy storage. Carbon 153:62–72

    Article  CAS  Google Scholar 

  18. Wang XH, Shi B, Wang XQ, Gao J, Zhang C, Yang ZZ, Xie HF (2017) One-step synthesis of V2O5/Ni3S2 nanoflakes for high electrochemical performance. J Mater Chem A 5:23543–23549

    Article  CAS  Google Scholar 

  19. Liu W, Xu H, Qin H, Lv Y, Zhu G, Lei X, Lin F, Zhang Z, Wang L (2020) Rapid coating of asphalt to prepare carbon-encapsulated composites of nano-silicon and graphite for lithium battery anodes. J Mater Sci 55:4382–4394. https://doi.org/10.1007/s10853-019-04313-x

    Article  CAS  Google Scholar 

  20. Huang P, Zhang M, Kang J, Feng H, Su Q, Du G, Yu Y, Xu B (2019) Rapid microwave-irradiation synthesis of ZnCo2O4/ZnO nanocrystals/carbon nanotubes composite as anodes for high-performance lithium-ion battery. J Mater Sci 54:4154–4167. https://doi.org/10.1007/s10853-018-3119-1

    Article  CAS  Google Scholar 

  21. Shuang W, Huang H, Kong LJ, Zhong M, Li A, Wang DH, Xu YH, Bu XH (2019) Nitrogen-doped carbon shell-confined Ni3S2 composite nanosheets derived from Ni-MOF for high performance sodium-ion battery anodes. Nano Energy 62:154–163

    Article  CAS  Google Scholar 

  22. Wang W, Zeng P, Li J, Zhao Y, Chen M, Shao J, Fang Z (2018) Ultrathin nanosheets assembled hierarchical Co/NiSx@C hollow spheres for reversible lithium storage. ACS Appl Nano Mater 1:3435–3445

    Article  CAS  Google Scholar 

  23. Kong L, Zhu J, Shuang W, Bu XH (2018) Nitrogen-doped wrinkled carbon foils derived from MOF nanosheets for superior sodium storage. Adv Energy Mater 8:1801515

    Article  Google Scholar 

  24. Li J, Li J, Chen T, Lu T, Mai W, Pan L (2019) Metal chelate induced in situ wrapping of Ni3S2 nanoparticles into N, S-codoped carbon networks for highly efficient sodium storage. Inorg Chem Front 6:694–704

    Article  CAS  Google Scholar 

  25. Tang T, Cui S, Chen W, Hou H, Mi L (2019) Bio-inspired nano-engineering of an ultrahigh loading 3D hierarchical Ni@NiCo2S4/Ni3S2 electrode for high energy density supercapacitors. Nanoscale 11:1728–1736

    Article  CAS  Google Scholar 

  26. Qie L, Chen WM, Xiong XQ, Hu CC, Zou F, Hu P, Huang YH (2015) Sulfur-doped carbon with enlarged interlayer distance as a high-performance anode material for sodium-ion batteries. Adv Sci 2:1500195

    Article  Google Scholar 

  27. Wang F, Zhu Y, Tian W, Lv X, Zhang H, Hu Z, Zhang Y, Ji J, Jiang W (2018) Co-doped Ni3S2@CNT arrays anchored on graphite foam with a hierarchical conductive network for high-performance supercapacitors and hydrogen evolution electrodes. J Mater Chem A 6:10490–10496

    Article  CAS  Google Scholar 

  28. Xu H, Zhu G, Hao B (2020) Metal-organic frameworks derived flower-like Co3O4/nitrogen doped graphite carbon hybrid for high-performance sodium-ion batteries. J Mater Sci Technol 35:100–108

    Article  Google Scholar 

  29. Wang C, Han Q, Xie R, Wang B, He T, Xie W, Tang Q, Li Y, Xu J, Yu B (2020) Fabrication of petal-like Ni3S2 nanosheets on 3D carbon nanotube foams as high-performance anode materials for Li-ion batteries. Electrochim Acta 331:135383

    Article  CAS  Google Scholar 

  30. Zhu JS, Hu GZ (2016) Facile synthesis of three-dimensional porous Ni3S2 electrode with superior lithium ion storage. Mater Lett 166:307–310

    Article  CAS  Google Scholar 

  31. Zhao C, Shen Z, Tu F, Hu Z (2020) Template directed hydrothermal synthesis of flowerlike NiSex/C composites as lithium/sodium ion battery anodes. J Mater Sci 55:3495–3506. https://doi.org/10.1007/s10853-019-04200-5

    Article  CAS  Google Scholar 

  32. Ge P, Zhang C, Hou H, Wu B, Zhou L, Li S, Wu T, Hu J, Mai L, Ji X (2018) Anions induced evolution of Co3X4 (X = O, S, Se) as sodium-ion anodes: The influences of electronic structure, morphology, electrochemical property. Nano Energy 48:617–629

    Article  CAS  Google Scholar 

  33. Song Y, Chen ZL, Li YM, Wang QC, Fang F, Zhou YN, Hu LF, Sun DL (2017) Pseudocapacitance-tuned high-rate and long-term cyclability of NiCo2S4 hexagonal nanosheets prepared by vapor transformation for lithium storage. J Mater Chem A 5:9022–9031

    Article  CAS  Google Scholar 

  34. Hou BH, Wang YY, Liu DS, Gu ZY, Feng X, Fan HS, Zhang TF, Lü CL, Wu XL (2018) N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries. Adv Funct Mater 28:1805444

    Article  Google Scholar 

  35. Zhang Z, Zhao H, Xia Q, Allen J, Zeng Z, Gao C, Li Z, Du X, Świerczek K (2016) High performance Ni3S2/Ni film with three dimensional porous architecture as binder-free anode for lithium ion batteries. Electrochim Acta 211:761–767

    Article  CAS  Google Scholar 

  36. Dong X, Deng ZP, Huo LH, Zhang XF, Gao S (2019) Large-scale synthesis of NiS@N and S co-doped carbon mesoporous tubule as high performance anode for lithium-ion battery. J Alloys Compd 788:984–992

    Article  CAS  Google Scholar 

  37. Fan HS, Yu H, Wu XL, Zhang Y, Luo ZZ, Wang HW, Guo YY, Madhavi S, Yan QY (2016) Controllable preparation of square nickel chalcogenide (NiS and NiSe2) nanoplates for superior Li/Na ion storage properties. ACS Appl Mater Inter 8:25261–25267

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51902040), the China Postdoctoral Science Foundation (No. 2017M622996), the China Postdoctoral Science Special Foundation (No. 2018T110959), the Sichuan Science and Technology Program (No. 19YYJC0129 and 20YYJC3821), and the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices of UESTC (KFJJ201915).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Wang, Cong Fan or Zhe-Sheng Feng.

Ethics declarations

Competing interest

The authors declared that there is no conflict of interest.

Additional information

Handling Editor: Mark Bissett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 21165 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HJ., Wang, Y., Ma, XD. et al. Cation-adsorption-assisted Ni3S2/carbon nanowalls composites with three-dimensional interconnected porous structures for high-performance lithium-ion battery anodes. J Mater Sci 55, 17081–17093 (2020). https://doi.org/10.1007/s10853-020-05203-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05203-3

Navigation