Skip to main content
Log in

Surface-enhanced Raman scattering on sandwiched structures with gallium telluride

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional crystals-based surface-enhanced Raman scattering (SERS) substrates are a research hot spot in the realm of chemistry and biology. Herein, a novel hybrid substrate based on AuNPs/GaTe/Au-film is proposed and fabricated for SERS activity. Finite-difference time-domain numerical simulations demonstrate that the plasmonic coupling in the hybrid structure, particularly the LSPs coupling of AuNPs and Au-film, promotes an enhanced electric field and consequently, greatly enhances the Raman activity. Impressively, the enhancement factor of 3 × 105 and the limiting detection concentration of 10−14 M have been achieved for the rhodamine 6G molecules, which are equivalent to the best results achieved from the patterned graphene substrates. Due to its simple structure, cost-effectiveness, good uniformity, reproducibility, and stability, it is expected that such a SERS substrate will open up a new way toward the ultrasensitive detection of molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ding SY, Yi J, Li JF, Ren B, Wu DY, Panneerselvam R, Tian ZQ (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1:16

    Article  Google Scholar 

  2. Schlucker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem-Int Ed 53:4756–4795

    Article  Google Scholar 

  3. Lee PC, Meisel D (1982) Adsorption and surface-enhanced raman of dyes on silver and gold sols. J Phys Chem 86:3391–3395

    Article  CAS  Google Scholar 

  4. Kong XM, Yu Q, Zhang XF, Du XZ, Gong H, Jiang H (2012) Synthesis and application of surface enhanced Raman scattering (SERS) tags of Ag@SiO2 core/shell nanoparticles in protein detection. J Mater Chem 22:7767–7774

    Article  CAS  Google Scholar 

  5. Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD (2003) Langmuir–Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett 3:1229–1233

    Article  CAS  Google Scholar 

  6. Kucheyev SO, Hayes JR, Biener J, Huser T, Talley CE, Hamza AV (2006) Surface-enhanced Raman scattering on nanoporous Au. Appl Phys Lett 89:3

    Google Scholar 

  7. Xu W, Zhu XG, Chu ZQ, Wang ZM, Xiao ZY, Huang ZL (2017) ScroBiculate sub-10 nm nanocavity arrays as effective SERS substrate for the trace determination of 3,3',4,4'-Polychlorinated biphenyls. Appl Surf Sci 399:711–715

    Article  CAS  Google Scholar 

  8. Gopalakrishnan A, Chirumamilla M, De Angelis F, Toma A, Zaccaria RP, Krahne R (2014) Bimetallic 3D nanostar dimers in ring cavities: recyclable and robust surface-enhanced Raman scattering substrates for signal detection from few molecules. ACS Nano 8:7986–7994

    Article  CAS  Google Scholar 

  9. Chirumamilla M, Toma A, Gopalakrishnan A, Das G, Zaccaria RP, Krahne R, Rondanina E, Leoncini M, Liberale C, De Angelis F, Di Fabrizio E (2014) 3D nanostar dimers with a sub-10-nm gap for single-/few- molecule surface-enhanced raman scattering. Adv Mater 26:2353–2358

    Article  CAS  Google Scholar 

  10. Xia M (2018) A review on applications of two-dimensional materials in surface-enhanced Raman spectroscopy. Int J Spectrosc 9

  11. Lu G, Li H, Liusman C, Yin ZY, Wu SX, Zhang H (2011) Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules. Chem Sci 2:1817–1821

    Article  CAS  Google Scholar 

  12. Lu JP, Lu JH, Liu HW, Liu B, Gong LL, Tok ES, Loh KP, Sow CH (2015) Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing. Small 11:1792–1800

    Article  CAS  Google Scholar 

  13. Wang P, Liang O, Zhang W, Schroeder T, Xie YH (2013) Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection. Adv Mater 25:4918–4924

    Article  CAS  Google Scholar 

  14. Tan Y, Ma LN, Gao ZB, Chen M, Chen F (2017) Two-dimensional heterostructure as a platform for surface-enhanced Raman scattering. Nano Lett 17:2621–2626

    Article  CAS  Google Scholar 

  15. Lu PQ, Lang JW, Weng ZP, Rahimi-Iman A, Wu HZ (2018) Hybrid structure of 2D layered GaTe with Au nanoparticles for ultrasensitive detection of aromatic molecules. ACS Appl Mater Interfaces 10:1356–1362

    Article  CAS  Google Scholar 

  16. Goul R, Das S, Liu QF, Xin M, Lu RT, Hui R, Wu JZ (2017) Quantitative analysis of surface enhanced Raman spectroscopy of Rhodamine 6G using a composite graphene and plasmonic Au nanoparticle substrate. Carbon 111:386–392

    Article  CAS  Google Scholar 

  17. Wang ZX, Xu K, Li YC, Zhan XY, Safdar M, Wang QS, Wang FM, He J (2014) Role of Ga vacancy on a multilayer GaTe phototransistor. ACS Nano 8:4859–4865

    Article  CAS  Google Scholar 

  18. Kim G, Kim M, Hyun C, Hong S, Ma KY, Shin HS, Lim H (2016) Hexagonal boron nitride/Au substrate for manipulating surface plasmon and enhancing capability of surface-enhanced Raman spectroscopy. ACS Nano 10:11156–11162

    Article  CAS  Google Scholar 

  19. Das G, Chirumamilla M, Toma A, Gopalakrishnan A, Zaccaria RP, Alabastri A, Leoncini M, Di Fabrizio E (2013) Plasmon based biosensor for distinguishing different peptides mutation states. Sci Rep 3:6

    Article  Google Scholar 

  20. Le Ru EC, Blackie E, Meyer M, Etchegoin PG (2007) Surface enhanced Raman scattering enhancement factors: a comprehensive study. J Phys Chem C 111:13794–13803

    Article  Google Scholar 

  21. Sharma B, Frontiera RR, Henry AI, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15:16–25

    Article  CAS  Google Scholar 

  22. Zhao Y, Yang D, Li XY, Liu Y, Hu X, Zhou DF, Lu YL (2017) Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles. Nanoscale 9:1087–1096

    Article  CAS  Google Scholar 

  23. Ling X, Xie LM, Fang Y, Xu H, Zhang HL, Kong J, Dresselhaus MS, Zhang J, Liu ZF (2010) Can graphene be used as a substrate for Raman enhancement? Nano Lett 10:553–561

    Article  CAS  Google Scholar 

  24. Xu SC, Jiang SZ, Wang JH, Wei J, Yue WW, Ma Y (2016) Graphene isolated Au nanoparticle arrays with high reproducibility for high-performance surface-enhanced Raman scattering. Sens Actuators B-Chem 222:1175–1183

    Article  CAS  Google Scholar 

  25. Chirumamilla M, Chirumamilla A, Roberts AS, Zaccaria RP, De Angelis F, Kristensen PK, Krahne R, Bozhevolnyi SI, Pedersen K, Toma A (2017) Hot-spot engineering in 3D multi-branched nanostructures: ultrasensitive substrates for surface-enhanced Raman spectroscopy. Adv Opt Mater 5:7

    Google Scholar 

Download references

Funding

National Natural Science Foundation of China (U1737109, 11933006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huizhen Wu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Wang, Y., Xu, H. et al. Surface-enhanced Raman scattering on sandwiched structures with gallium telluride. J Mater Sci 55, 10047–10055 (2020). https://doi.org/10.1007/s10853-020-04729-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04729-w

Navigation