Skip to main content
Log in

RhAg/rGO nanocatalyst: ligand-controlled synthesis and superior catalytic performances for the reduction of 4-nitrophenol

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The design of ultrafine, highly efficient and recyclable heterogeneous bimetallic nanoparticles catalysts is challenging. In this work, we report for the first time the preparation of ultrafine and monodispersed bimetallic RhAg nanoparticles that are uniformly supported on reduced graphene oxide (rGO) nanosheets (RhAg/rGO). A key is the presence of the tris(triazolyl)-polyethylene glycol (tristrz-PEG) ligand as a weak stabilizing agent. This amphiphilic tridentate ligand not only enables the formation of ultrafine RhAg NPs, but also allows quantitative fixation of the NPs onto the rGO, which avoids metal loss and further improves catalytic efficiency. The RhAg/rGO catalysts were characterized by various techniques including UV–Vis, ICP-AES, TEM, HRTEM, STEM, EDX and XPS. By varying the molar ratios of Rh to Ag, the highest catalytic activity in the reduction of 4-nitrophenol by NaBH4 was obtained for RhAg0.5/rGO with a remarkable reaction rate of k app = 14.8 × 10−3 s−1 (k nor = 1415 s−1 g−1). Moreover, the catalyst was recycled, and its amount was reduced to 100 ppm of RhAg0.5/rGO while retaining an exceptional catalytic efficiency. The present work contributes to the effective design of ultrafine bimetallic NPs/graphene-based nanocomposites and to the fabrication of very efficient and cost-effective catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Scheme 2
Figure 3

Similar content being viewed by others

References

  1. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 122:1179–1201

    Article  Google Scholar 

  2. Sankar M, Dimitratos N, Miedziak PJ, Wells PP, Kiely CJ, Hutchings GJ (2012) Designing bimetallic catalysts for a green and sustainable future. Chem Soc Rev 41:8099–8139

    Article  Google Scholar 

  3. Wang D, Li Y (2011) Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater 23:1044–1060

    Article  Google Scholar 

  4. Liu X, Wang D, Li Y (2012) Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nano Today 7:448–466

    Article  Google Scholar 

  5. Peng X, Pan Q, Rempel GL (2008) Bimetallic dendrimer-encapsulated nanoparticles as catalysts: a review of the research advances. Chem Soc Rev 37:1619–1628

    Article  Google Scholar 

  6. Wu B, Zheng N (2013) Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8:168–197

    Article  Google Scholar 

  7. Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng D, Zboril R, Varma RS (2015) Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44:7540–7590

    Article  Google Scholar 

  8. Crooks RM, Zhao MQ, Sun L, Chechik V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190

    Article  Google Scholar 

  9. Myers VS, Weir MG, Carino EV, Yancey DF, Pande S, Crooks RM (2011) Dendrimer-encapsulated nanoparticles: new synthetic and characterization methods and catalytic applications. Chem Sci 2:1632–1646

    Article  Google Scholar 

  10. Gao F, Goodman DW (2012) Pd–Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chem Soc Rev 41:8009–8020

    Article  Google Scholar 

  11. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 106:845–910

    Article  Google Scholar 

  12. Hutchings GJ, Kiely CJ (2013) Strategies for the synthesis of supported gold palladium nanoparticles with controlled morphology and composition. Acc Chem Res 46:1759–1772

    Article  Google Scholar 

  13. Edwards JK, Freakley SJ, Carley AF, Kiely CJ, Hutchings GJ (2014) Strategies for designing supported gold–palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Acc Chem Res 47:845–854

    Article  Google Scholar 

  14. Zhang L, Xie Z, Gong J (2016) Shape-controlled synthesis of Au–Pd bimetallic nanocrystals for catalytic applications. Chem Soc Rev 45:3916–3934

    Article  Google Scholar 

  15. Astruc D, Lu F, Ruiz J (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44:7852–7872

    Article  Google Scholar 

  16. Zhang HJ, Watanabe T, Okumura M, Haruta M, Toshima N (2012) Catalytically highly active top gold atom on palladium nanocluster. Nat Mater 11:49–52

    Article  Google Scholar 

  17. Aita T, Kohyama M, Haruta M (2013) Electron microscopy study of gold nanoparticles deposited on transition metal oxides. Acc Chem Res 46:1773–1782

    Article  Google Scholar 

  18. Lopez-Sanchez JA, Dimitratos N, Hammond C, Brett GL, Kesavan L, White S, Miedziak P, Tiruvalam R, Jenkins RL, Carley AF, Knight D, Kiely CJ, Hutchings GJ (2011) Facile removal of stabilizer-ligands from supported gold nanoparticles. Nat Chem 3:551–556

    Article  Google Scholar 

  19. Sarina S, Zhu H, Jaatinen E, Xiao Q, Liu H, Jia J, Chen C, Zhao J (2013) Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. J Am Chem Soc 135:5793–5801

    Article  Google Scholar 

  20. Jiang HL, Xu Q (2011) J Mater Chem 21:13705–13725

    Article  Google Scholar 

  21. Singh AK, Singh AK, Xu Q (2013) Synergistic catalysis over bimetallic alloy nanoparticles. ChemCatChem 5:652–676

    Article  Google Scholar 

  22. Yuan Y, Yan N, Dyson PJ (2012) Advances in the rational design of rhodium nanoparticle catalysts: control via manipulation of the nanoparticle core and stabilizer. ACS Catal 2:1057–1069

    Article  Google Scholar 

  23. Garcia S, Zhang L, Piburn GW, Henkelman G, Humphrey SM (2014) Microwave synthesis of classically immiscible rhodium–silver and rhodium–gold alloy nanoparticles: highly active hydrogenation catalysts. ACS Nano 8:11512–11521

    Article  Google Scholar 

  24. Yasukawa T, Miyamura H, Kobayashi S (2012) Polymer-incarcerated chiral Rh/Ag nanoparticles for asymmetric 1,4-addition reactions of arylboronic acids to enones: remarkable effects of bimetallic structure on activity and metal leaching. J Am Chem Soc 134:16963–16966

    Article  Google Scholar 

  25. Yasukawa T, Suzuki A, Miyamura H, Nishino K, Kobayashi S (2015) Chiral metal nanoparticle systems as heterogeneous catalysts beyond homogeneous metal complex catalysts for asymmetric addition of arylboronic acids to α, β-unsaturated carbonyl compounds. J Am Chem Soc 137:6616–6623

    Article  Google Scholar 

  26. Hirakawa K, Toshima N (2003) Ag/Rh bimetallic nanoparticles formed by self-assembly from Ag and Rh monometallic nanoparticles in solution. Chem Lett 32:8–79

    Article  Google Scholar 

  27. Toshima N, Kanemaru M, Shiraishi Y, Koga Y (2005) Spontaneous formation of core/shell bimetallic nanoparticles: a calorimetric study. J Phys Chem B 109:16326–16331

    Article  Google Scholar 

  28. Yang A, Sakata O, Kusada K, Yayama T, Yoshikawa H, Ishimoto T, Koyama M, Kobayashi H, Kitagawa H (2014) The valence band structure of AgxRh1–x alloy nanoparticles. Appl Phys Lett 105:153109

    Article  Google Scholar 

  29. Kusada K, Yamauchi M, Kobayashi H, Kitagawa H, Kubota Y (2010) Hydrogen-storage properties of solid-solution alloys of immiscible neighboring elements with Pd. J Am Chem Soc 132:15896–15898

    Article  Google Scholar 

  30. Dai Y, Wang Y, Liu B, Yang Y (2015) Metallic nanocatalysis: an accelerating seamless integration with nanotechnology. Small 11:268–289

    Article  Google Scholar 

  31. Chen S, Thota S, Wang X, Zhao J (2016) From solid to core@shell to hollow Pt–Ag nanocrystals: thermally controlled surface segregation to enhance catalytic activity and durability. J Mater Chem A 4:9038–9043

    Article  Google Scholar 

  32. Roy A, Debnath B, Sahoo R, Chandrakumar KRS, Ray C, Jana J, Pal T (2016) Enhanced catalytic activity of Ag/Rh bimetallic nanomaterial: evidence of an ensemble effect. J Phys Chem C 120:5457–5467

    Article  Google Scholar 

  33. Wang C, Ciganda R, Salmon L, Gregurec D, Irigoyen J, Moya S, Ruiz J, Astruc D (2016) Highly efficient transition metal nanoparticle catalysts in aqueous solutions. Angew Chem Int Ed 55:3091–3095

    Article  Google Scholar 

  34. Wang C, Wang D, Yu S, Cornilleau T, Ruiz J, Salmon L, Astruc D (2016) Design and applications of an efficient amphiphilic “click” CuI catalyst in water. ACS Catal 6:5424–5431

    Article  Google Scholar 

  35. Özçubukçu S, Ozkal E, Jimeno C, Pericas MA (2009) A highly active catalyst for huisgen 1, 3-dipolar cycloadditions based on the tris(triazolyl) methanol-Cu(I) structure. Org Lett 11:4680–4683

    Article  Google Scholar 

  36. Radich JG, Kamat PV (2013) Making graphene holey. gold-nanoparticle-mediated hydroxyl radical attack on reduced graphene oxide. ACS Nano 7:5546–5557

    Article  Google Scholar 

  37. Deraedt C, Wang D, Salmon L, Etienne L, Labrugère C, Ruiz J, Astruc D (2015) Robust, efficient, and recyclable catalysts from the impregnation of preformed dendrimers containing palladium nanoparticles on a magnetic support. ChemCatChem 7:303–308

    Article  Google Scholar 

  38. Kim SM, Qadir K, Seo B, Jeong HY, Joo SH, Terasaki O, Park JY (2013) Nature of Rh oxide on Rh nanoparticles and its effect on the catalytic activity of CO oxidation. Catal Lett 143:1153–1161

    Article  Google Scholar 

  39. Kim S, Qadir K, Jin S, Reddy AS, Seo B, Mun BS, Joo SH, Park JY (2012) Trend of catalytic activity of CO oxidation on Rh and Ru nanoparticles: role of surface oxide. Catal Today 185:131–137

    Article  Google Scholar 

  40. Prinz J, Gaspari R, Stöckl QS, Gille P, Armbrüster M, Brune H, Gröning O, Pignedoli CA, Passerone D, Widmer R (2014) Ensemble effect evidenced by CO adsorption on the 3-fold PdGa surfaces. J Phys Chem C 118:12260–12265

    Article  Google Scholar 

  41. Sau TK, Pal A, Pal T (2001) Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J Phys Chem B 105:9266–9272

    Article  Google Scholar 

  42. Pal AA, Pal T (2015) Nitroarene reduction: a trusted model reaction to test nanoparticle catalysts. Chem Commun 51:9410–9431

    Article  Google Scholar 

  43. Hervés P, Pérez-Lorenzo M, Liz-Marzán LM, Dzubiella J, Lu Y, Ballauff M (2012) Catalysis by metallic nanoparticles in aqueous solution: model reactions. Chem Soc Rev 41:5577–5587

    Article  Google Scholar 

  44. Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold-and other transition metal nanoparticles. Coord Chem Rev 287:114–136

    Article  Google Scholar 

  45. Kuroda K, Ishida T, Haruta M (2009) Reduction of 4-nitrophenol to 4-aminophenol over Au nanoparticles deposited on PMMA. J Mol Catal A: Chem 298:7–11

    Article  Google Scholar 

  46. Wunder S, Polzer F, Lu Y, Ballauff M (2010) Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. J Phys Chem C 114:8814–8820

    Article  Google Scholar 

  47. Saha S, Pal A, Kundu S, Basu S, Pal T (2010) Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26:2885–2893

    Article  Google Scholar 

  48. Wang SN, Zhang MC, Zhang WQ (2011) Yolk − shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal 1:207–211

    Article  Google Scholar 

  49. Wunder S, Lu Y, Albrecht M, Ballauff M (2011) Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal 1:908–916

    Article  Google Scholar 

  50. Li J, Liu CY, Liu Y (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22:8426–8430

    Article  Google Scholar 

  51. Zhang J, Han D, Zhang H, Chaker M, Zhao Y, Ma D (2012) In situ recyclable gold nanoparticles using CO2-switchable polymers for catalytic reduction of 4-nitrophenol. Chem Commun 48:11510–11512

    Article  Google Scholar 

  52. Shivhare A, Ambrose SJ, Zhang H, Purves RW, Scott RWJ (2013) Stable and recyclable Au25 clusters for the reduction of 4-nitrophenol. Chem Commun 49:276–278

    Article  Google Scholar 

  53. Pachfule P, Kandambeth S, Dıaz D, Banerjee R (2014) Highly stable covalent organic framework–Au nanoparticles hybrids for enhanced activity for nitrophenol reduction. Chem Commun 50:3169–3171

    Article  Google Scholar 

  54. Gu S, Wunder S, Lu Y, Ballauff M (2014) Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J Phys Chem C 118:18618–18625

    Article  Google Scholar 

  55. Wu T, Zhang L, Gao J, Liu Y, Gao C, Yan J (2013) Fabrication of graphene oxide decorated with Au–Ag alloy nanoparticles and its superior catalytic performance for the reduction of 4-nitrophenol. J Mater Chem A 1:7384–7390

    Article  Google Scholar 

  56. Lv JJ, Wang AJ, Ma X, Xiang RY, Chen JR, Feng JJ (2015) One-pot synthesis of porous Pt–Au nanodendrites supported on reduced graphene oxide nanosheets toward catalytic reduction of 4-nitrophenol. J Mater Chem A 3:290–296

    Article  Google Scholar 

  57. Song P, He LL, Wang AJ, Mei LP, Zhong SX, Chen JR, Feng JJ (2015) Surfactant-free synthesis of reduced graphene oxide supported porous PtAu alloyed nanoflowers with improved catalytic activity. J Mater Chem A 3:5321–5327

    Article  Google Scholar 

  58. Gupta VK, Atar N, Yola ML, Ustundag Z, Uzun L (2014) A novel magnetic Fe@Au core–shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds. Water Res 48:210–217

    Article  Google Scholar 

  59. Shen YY, Sun Y, Zhou LN, Li YJ, Yeung ES (2014) Synthesis of ultrathin PtPdBi nanowire and its enhanced catalytic activity towards p-nitrophenol reduction. J Mater Chem A 2:2977–2984

    Article  Google Scholar 

  60. Liu Q, Xu Y, Wang A, Feng J (2015) One-step melamine-assisted synthesis of graphene-supported AuPt@Au nanocrystals for enhanced catalytic reduction of p-nitrophenol. RSC Adv 5:96028–96033

    Article  Google Scholar 

  61. Mei LP, Wang R, Song P, Feng JJ, Wang ZG, Chen JR, Wang AJ (2016) One-pot solvothermal synthesis of bimetallic yolk–shell Ni@PtNi nanocrystals supported on reduced graphene oxide and their excellent catalytic properties for p-nitrophenol reduction. New J Chem 40:2315–2320

    Article  Google Scholar 

  62. Lee Y, Jang S, Cho C-W, Bae J-S, Park S, Park KH (2013) Recyclable rhodium nanoparticles: green hydrothermal synthesis, characterization, and highly catalytic performance in reduction of nitroarenes. J Nanosci Nanotechnol 13:7477–7481

    Article  Google Scholar 

  63. Lin C, Wu G, Li H, Geng Y, Xie G, Yang J, Liu B, Jin J (2017) Nanoscale 9:1834–1839

    Article  Google Scholar 

  64. Liu CH, Chen XQ, Hu YF, Sham TK, Sun QJ, Chang JB, Gao X, Sun XH, Wang SD (2013) One-pot environmentally friendly approach toward highly catalytically active bimetal-nanoparticle-graphene hybrids. ACS Appl Mater Interfaces 5:5072–5079

    Article  Google Scholar 

  65. Tang S, Vongehr S, He G, Chen L, Meng X (2012) Highly catalytic spherical carbon nanocomposites allowing tunable activity via controllable Au–Pd doping. J Colloid Interface Sci 375:125–133

    Article  Google Scholar 

  66. Zhang L, Wu T, Xu X, Xia F, Na H, Liu Y, Qiu H, Wang W, Gao J (2015) Magnetic bimetallic nanoparticles supported reduced graphene oxide nanocomposite: fabrication, characterization and catalytic capability. J Alloy Compd 628:364–371

    Article  Google Scholar 

  67. Wang Y, Wang X, Sun B, Tang S, Meng X (2016) Concentration-dependent morphology control of Pt-coated-Ag nanowires and effects of bimetallic interfaces on catalytic activity. J Mater Sci Technol 32:41–47

    Article  Google Scholar 

  68. Lu W, Ning R, Qin X, Zhang Y, Chang G, Liu S, Luo Y, Sun X (2011) Synthesis of Au nanoparticles decorated graphene oxide nanosheets: noncovalent functionalization by TWEEN 20 in situ reduction of aqueous chloroaurate ions for hydrazine detection and catalytic reduction of 4-nitrophenol. J Hazard Mater 197:320–326

    Article  Google Scholar 

  69. Ciganda R, Li N, Deraedt C, Gatard S, Zhao P, Salmon L, Hernandez R, Ruiz J, Astruc D (2014) Gold nanoparticles as electron reservoir redox catalysts for 4-nitrophenol reduction: a strong stereoelectronic ligand influence. Chem Commun 50:10126–10129

    Article  Google Scholar 

  70. Deraedt C, Salmon L, Gatard S, Ciganda R, Hernandez R, Ruiz J, Astruc D (2014) Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem Commun 50:14194–14196

    Article  Google Scholar 

  71. Wang D, Astruc D (2017) The recent development of efficient Earth-abundant transition metal nanocatalysts. Chem Soc Rev 46:816–854

    Article  Google Scholar 

  72. Liu X, Astruc D (2017) From galvanic to anti-galvanic synthesis of bimetallic nanoparticles and applications to catalysis, sensing and materials science. Adv Mater. doi:10.1002/adma.201605305

    Google Scholar 

Download references

Acknowledgements

Financial support from the China Scholarship Council (CSC) of the People’s Republic of China (Grant to C.W.), the Universities of Bordeaux, Toulouse 3, the LCC (Toulouse) and the Centre National de la Recherche Scientifique (CNRS) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Astruc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32071 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Ciganda, R., Yate, L. et al. RhAg/rGO nanocatalyst: ligand-controlled synthesis and superior catalytic performances for the reduction of 4-nitrophenol. J Mater Sci 52, 9465–9476 (2017). https://doi.org/10.1007/s10853-017-1158-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1158-7

Keywords

Navigation