Skip to main content

Advertisement

Log in

Hydrothermal synthesis of tetragonal phase BaTiO3 on carbon fiber with enhanced electromechanical coupling

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Core–shell fibers utilizing carbon fiber as the load-bearing element and a functional shell are in the early stages of research and development, but are already showing promising results in multifunctional composite fabrication. This study builds on prior multifunctional fiber research that applied hydrothermal synthesis to grow BaTiO3 on carbon fibers. In this work, the hydrothermal reaction conditions are thoroughly explored and illustrate the typical trade-off between the tensile strength of the core fiber and the d 33 piezoelectric strain coefficient. This trade-off exemplifies the difficulty in synthesizing multifunctional fibers that maintain mechanical integrity while offering enhanced electromechanical functionality. By studying the hydrothermal synthesis conditions, parameters are established that result in the first demonstration of tetragonal phase BaTiO3 on carbon fiber. Synthesis parameters are developed that maintain the tensile strength of the core carbon fiber while increasing the d 33 piezoelectric strain coefficient of the BaTiO3 film. The optimal fiber has a tensile strength of 4.96 GPa and a d 33 of 39.2 pm/V, which equate to 16.2 and 49.6% increases over the prior synthesis of BaTiO3 coated carbon fibers, respectively. Therefore, this work establishes hydrothermal reaction conditions that create higher-performance multifunctional fibers through the development of tetragonal phase BaTiO3 on carbon fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Tsurumi T, Suzuki T, Yamane M, Daimon M (1994) Fabrication of barium titanate/strontium titanate artificial superlattice by atomic layer epitaxy. Jpn J Appl Phys 33:5192–5195

    Article  Google Scholar 

  2. Vehkamäki M, Hatanpää T, Hänninen T, Ritala M, Leskelä M (1999) Growth of SrTiO3 and BaTiO3 thin films by atomic layer deposition. Electrochem Solid State Lett 2:504–506

    Article  Google Scholar 

  3. Nawathey R, Vispute R, Chaudhari S, Kanetkar S, Ogale SB (1989) Pulsed laser deposition of barium titanate films on silicon. Solid State Commun 71:9–12

    Article  Google Scholar 

  4. Nashimoto K, Fork DK, Geballe TH (1992) Epitaxial growth of MgO on GaAs (001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition. Appl Phys Lett 60:1199–1201

    Article  Google Scholar 

  5. Qu B, Evstigneev M, Johnson D, Prince R (1998) Dielectric properties of BaTiO3/SrTiO3 multilayered thin films prepared by pulsed laser deposition. Appl Phys Lett 72:1394–1396

    Article  Google Scholar 

  6. Lee HS, Koo SM, Yoo JW (2010) Ultrathin barium titanate films by polyol thermal decomposition process. J Mater Sci 45:6275–6279. doi:10.1007/s10853-010-4850-4

    Article  Google Scholar 

  7. Kwak B, Zhang K, Boyd E, Erbil A, Wilkens B (1991) Metalorganic chemical vapor deposition of BaTiO3 thin films. J Appl Phys 69:767–772

    Article  Google Scholar 

  8. Wills L, Wessels BW, Richeson D, Marks TJ (1992) Epitaxial growth of BaTiO3 thin films by organometallic chemical vapor deposition. Appl Phys Lett 60:41–43

    Article  Google Scholar 

  9. Kim I, Lee C, Park SJ (1994) Preparation of BaTiO3 thin films by metalorganic chemical vapor deposition using ultrasonic spraying. Jpn J Appl Phys 33:5125–5128

    Article  Google Scholar 

  10. Zhou Z, Bowland CC, Malakooti MH, Tang H, Sodano HA (2016) Lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanowires for energy harvesting. Nanoscale 8:5098–5105

    Article  Google Scholar 

  11. Tang H, Zhou Z, Bowland CC, Sodano HA (2015) Synthesis of calcium copper titanate (CaCu3Ti4O12) nanowires with insulating SiO2 barrier for low loss high dielectric constant nanocomposites. Nano Energy 17:302–307

    Article  Google Scholar 

  12. Gu H, Hu Y, You J, Hu Z, Yuan Y, Zhang T (2007) Characterization of single-crystalline PbTiO3 nanowire growth via surfactant-free hydrothermal method. J Appl Phys 101:024319

    Article  Google Scholar 

  13. Moon J, Li T, Randall CA, Adair JH (1997) Low temperature synthesis of lead titanate by a hydrothermal method. J Mater Res 12:189–197

    Article  Google Scholar 

  14. Tang H, Zhou Z, Bowland CC, Sodano HA (2015) Growth of highly textured PbTiO3 films on conductive substrate under hydrothermal conditions. Nanotechnology 26:345602

    Article  Google Scholar 

  15. Lin Y, Liu Y, Sodano HA (2009) Hydrothermal synthesis of vertically aligned lead zirconate titanate nanowire arrays. Appl Phys Lett 95:122901

    Article  Google Scholar 

  16. Zhou Z, Tang H, Sodano HA (2014) Scalable synthesis of morphotropic phase boundary lead zirconium titanate nanowires for energy harvesting. Adv Mater 26:7547–7554

    Article  Google Scholar 

  17. Cheng H, Ma J, Zhu B, Cui Y (1993) Reaction mechanisms in the formation of lead zirconate titanate solid solutions under hydrothermal conditions. J Am Ceram Soc 76:625–629

    Article  Google Scholar 

  18. Xu G, Ren Z, Du P, Weng W, Shen G, Han G (2005) Polymer-assisted hydrothermal synthesis of single-crystalline tetragonal perovskite PbZr0.52Ti0.48O3 nanowires. Adv Mater 17:907–910

    Article  Google Scholar 

  19. Xu S, Poirier G, Yao N (2012) PMN-PT nanowires with a very high piezoelectric constant. Nano Lett 12:2238–2242

    Article  Google Scholar 

  20. Hertl W (1988) Kinetics of barium titanate synthesis. J Am Ceram Soc 71:879–883. doi:10.1111/j.1151-2916.1988.tb07540.x

    Article  Google Scholar 

  21. Bacsa R, Ravindranathan P, Dougherty J (1992) Electrochemical, hydrothermal, and electrochemical-hydrothermal synthesis of barium titanate thin films on titanium substrates. J Mater Res 7:423–428. doi:10.1557/JMR.1992.0423

    Article  Google Scholar 

  22. Yoshimura M, Yoo S, Hayashi M, Ishizawa N (1989) Preparation of BaTiO3 thin film by hydrothermal electrochemical method. Jpn J Appl Phys 28:L2007–L2009. doi:10.1143/JJAP.28.L2007

    Article  Google Scholar 

  23. Ciftci E, Rahaman M, Shumsky M (2001) Hydrothermal precipitation and characterization of nanocrystalline BaTiO3 particles. J Mater Sci 36:4875–4882. doi:10.1023/A:1011828018247

    Article  Google Scholar 

  24. Zeng J, Lin C, Li J, Li K (1999) Low temperature preparation of barium titanate thin films by a novel sol–gel–hydrothermal method. Mater Lett 38:112–115

    Article  Google Scholar 

  25. Eckert JO, Hung-Houston CC, Gersten BL, Lencka MM, Riman RE (1996) Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J Am Ceram Soc 79:2929–2939

    Article  Google Scholar 

  26. Dutta PK, Gregg J (1992) Hydrothermal synthesis of tetragonal barium titanate (BaTiO3). Chem Mater 4:843–846

    Article  Google Scholar 

  27. Kumazawa H, Annen S, Sada E (1995) Hydrothermal synthesis of barium titanate fine particles from amorphous and crystalline titania. J Mater Sci 30:4740–4744. doi:10.1007/BF01153087

    Article  Google Scholar 

  28. Koka A, Sodano HA (2013) High-sensitivity accelerometer composed of ultra-long vertically aligned barium titanate nanowire arrays. Nat Commun. doi:10.1038/ncomms3682

    Google Scholar 

  29. Koka A, Zhou Z, Sodano H (2013) Vertically aligned BaTiO3 nanowire arrays for energy harvesting. Energy Environ Sci 7:288–296

    Article  Google Scholar 

  30. Koka A, Sodano HA (2014) A low-frequency energy harvester from ultralong, vertically aligned BaTiO3 nanowire arrays. Adv Energy Mater 4:1301660

    Article  Google Scholar 

  31. Koka A, Zhou Z, Tang H, Sodano HA (2014) Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications. Nanotechnology 25:375603

    Article  Google Scholar 

  32. Bowland CC, Malakooti MH, Zhou Z, Sodano HA (2015) Highly aligned arrays of high aspect ratio barium titanate nanowires via hydrothermal synthesis. Appl Phys Lett 106:222903

    Article  Google Scholar 

  33. Lin Y, Ehlert G, Sodano HA (2009) Increased interface strength in carbon fiber composites through a ZnO nanowire interphase. Adv Funct Mater 19:2654–2660

    Article  Google Scholar 

  34. Ehlert GJ, Sodano HA (2009) Zinc oxide nanowire interphase for enhanced interfacial strength in lightweight polymer fiber composites. ACS Appl Mater Interfaces 1:1827–1833. doi:10.1021/am900376t

    Article  Google Scholar 

  35. Galan U, Lin Y, Ehlert GJ, Sodano HA (2011) Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated carbon fibers. Compos Sci Technol 71:946–954

    Article  Google Scholar 

  36. Ehlert GJ, Galan U, Sodano HA (2013) Role of surface chemistry in adhesion between ZnO nanowires and carbon fibers in hybrid composites. ACS Appl Mater Interfaces 5:635–645

    Article  Google Scholar 

  37. Hwang H, Malakooti MH, Patterson BA, Sodano HA (2015) Increased interyarn friction through ZnO nanowire arrays grown on aramid fabric. Compos Sci Technol 107:75–81. doi:10.1016/j.compscitech.2014.12.001

    Article  Google Scholar 

  38. Malakooti MH, Hwang H, Sodano HA (2015) Morphology-controlled ZnO nanowire arrays for tailored hybrid composites with high damping. ACS Appl Mater Interfaces 7:332–339. doi:10.1021/am506272c

    Article  Google Scholar 

  39. Bowland C, Zhou Z, Sodano HA (2014) Multifunctional barium titanate coated carbon fibers. Adv Funct Mater 24:6303–6308. doi:10.1002/adfm.201401417

    Article  Google Scholar 

  40. Lin Y, Zhou Z, Sodano HA (2013) Barium titanate and barium strontium titanate coated carbon fibers for multifunctional structural capacitors. J Compos Mater 47:1527–1533

    Article  Google Scholar 

  41. Joshi UA, Yoon S, Baik S, Lee JS (2006) Surfactant-free hydrothermal synthesis of highly tetragonal barium titanate nanowires: a structural investigation. J Phys Chem B 110:12249–12256

    Article  Google Scholar 

  42. Lee H, Moon S, Choi C, Kim DK (2012) Synthesis and size control of tetragonal barium titanate nanopowders by facile solvothermal method. J Am Ceram Soc 95:2429–2434

    Article  Google Scholar 

  43. Kajiyoshi K, Ishizawa N, Yoshimura M (1991) Preparation of tetragonal barium titanate thin film on titanium metal substrate by hydrothermal method. J Am Ceram Soc 74:369–374

    Article  Google Scholar 

  44. Wu M, Long J, Wang G, Huang A, Luo Y, Feng S, Xu R (1999) Hydrothermal synthesis of tetragonal barium titanate from barium hydroxide and titanium dioxide under moderate conditions. J Am Ceram Soc 82:3254–3256

    Article  Google Scholar 

  45. Gardner SD, Singamsetty CS, Wu Z, Pittman CU Jr (1996) XPS/ISS investigation of carbon fibers sequentially exposed to nitric acid and sodium hydroxide. Surf Interface Anal 24:311–320

    Article  Google Scholar 

  46. Zhou Z, Tang H, Sodano HA (2013) Vertically aligned arrays of BaTiO3 nanowires. ACS Appl Mater Interfaces 5:11894–11899

    Article  Google Scholar 

  47. Zhou Z, Bowland CC, Patterson BA, Malakooti MH, Sodano HA (2016) Conformal BaTiO3 films with high piezoelectric coupling through an optimized hydrothermal synthesis. ACS Appl Mater Interfaces 8:21446–21453

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support for this research from National Science Foundation (Award# CMMI-1333818 and CBET-1510855) and Air Force Office of Scientific Research (Award# FA9550-12-1-0132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry A. Sodano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

This submission was written by the author acting in his own independent capacity and not on behalf of UT-Battelle, LLC, or its affiliates or successors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowland, C.C., Sodano, H.A. Hydrothermal synthesis of tetragonal phase BaTiO3 on carbon fiber with enhanced electromechanical coupling. J Mater Sci 52, 7893–7906 (2017). https://doi.org/10.1007/s10853-017-0994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0994-9

Keywords

Navigation