Skip to main content

Advertisement

Log in

Microfibrillated cellulose-SiO2 composite nanopapers produced by spray deposition

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microfibrillated cellulose (MFC)-SiO2 nanopapers were prepared using a rapid spray deposition technique. Large area (~310 cm2) composite nanopapers with thickness and SiO2 content varying from 16 to 92 µm and 0 to 33 %, respectively, were prepared in less than 30 min with nearly complete nanoparticle retention in the cellulose mat. In the presence of an excess of MFC, SiO2 nanoparticles formed large clusters embedded in a dense and continuous cellulose matrix which conferred to the composite an extremely low permeability to air, i.e., below 2 nm2. For silica mass fraction above 20 %, SiO2 clusters induced a net increase in air permeability and ionic conductivity up to 12 nm2 and 1.5 mS cm−1 for a SiO2 content of 33 %. Despite the addition of an inert phase, composite nanopapers displayed mechanical properties, viz. Young’s modulus and internal cohesion higher than 2.2 GPa and 913 J m−2, outperforming those of most conventional papers. This study demonstrates that MFC-SiO2 nanopapers fabricated by spray deposition can be an alternative to PE/PP membranes as separators in Li-ion batteries and, in general, that spray deposition is a promising method for the rapid fabrication of large area composite nanopapers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pääkkö M, Ankerfors M, Kosonen H, Nykanen A, Ahola S, Osterberg M, Ruoko-lainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941

    Article  Google Scholar 

  2. Meyer V, Tapin-Lingua S, Da Silva Perez D, Arndt T, Kautto J (2012) Technical opportunities and economic challenges to produce nanofibrillated cellulose in pilot scale: NFC delivery for applications in demonstrations trials. In: Proceed. SUNPAP EU project-final conference, Milan, Italy, 19–20 June 2012. http://sunpap.vtt.fi/finalconference2012.htm

  3. Sandquist D (2013) New horizons for microfibrillated cellulose. Appita J 66:156–162

    Google Scholar 

  4. Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  Google Scholar 

  5. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2:728–765

    Article  Google Scholar 

  6. Gonzalez I, Alcala M, Chinga-Carrasco G, Vilaseca F, Boufi S, Mutjé P (2014) From paper to nanopaper: evolution of mechanical and physical properties. Cellulose 21:2599–2609

    Article  Google Scholar 

  7. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764

    Article  Google Scholar 

  8. Zheng G, Cui Y, Karabulut E, Wågberg L, Zhu H, Hu L (2013) Nanostructured paper for flexible energy and electronic devices. MRS Bull 38:320–325

    Article  Google Scholar 

  9. Jabbour L, Bongiovanni R, Chauss D, Gerbaldi C, Beneventi D (2013) Cellulose-based Li-ion batteries: a review. Cellulose 20:1523–1545

    Article  Google Scholar 

  10. Syverud K, Stenius P (2009) Strength and barrier properties of MFC films. Cellulose 16:75–85

    Article  Google Scholar 

  11. Sehaqui H, Liu A, Zhou Q, Berglound LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198

    Article  Google Scholar 

  12. Österberg M, Vartiainen J, Lucenius J, Hippi U, Seppälä J, Serimaa R, Laine J (2013) A fast method to produce strong NFC films as a platform for barrier and functional materials. Appl Mater Interfaces 5:4640–4647

    Article  Google Scholar 

  13. Varanasi S, Batchelor WJ (2013) Rapid preparation of cellulose nanofibre sheet. Cellulose 20:211–215

    Article  Google Scholar 

  14. Beneventi D, Chaussy D, Zeno E (2014) Rapid nanopaper production by spray deposition of concentrated microfibrillated cellulose slurries. Ind Crops Prod. doi:10.1016/j.indcrop.2014.11.023

    Google Scholar 

  15. Beneventi D, Chaussy D, Curtil D, Zolin L, Gerbaldi C, Penazzi N (2014) Highly porous paper loading with microfibrillated cellulose by spray coating on wet substrates. Ind Eng Chem Res 53:10982–10989

    Article  Google Scholar 

  16. Beneventi D, Chaussy D, Curtil D, Zolin L, Bruno E, Bongiovanni R, Destro M, Gerbaldi C, Penazzi N, Tapin-Lingua S (2014) Pilot-scale elaboration of graphite/microfibrillated cellulose anodes for Li-ion batteries by spray deposition on a forming paper sheet. Chem Eng J 243:372–379

    Article  Google Scholar 

  17. Kulachenko A, Denoyelle T, Galland S, Lindström SB (2012) Elastic properties of cellulose nanopaper. Cellulose 19:793–807

    Article  Google Scholar 

  18. Pras O, Beneventi D, Chaussy D, Piette P, Tapin-Lingua S (2013) Use of microfibrillated cellulose and dendritic copper for the elaboration of conductive films from water- and ethanol-based dispersions. J Mater Sci 46:6911–6920

    Article  Google Scholar 

  19. Jabbour L, Gerbaldi C, Chaussy D, Zeno E, Bodoardo S, Beneventi D (2010) Microfibrillated cellulose–graphite nanocomposites for highly flexible paper-like Li-ion battery electrodes. J Mater Chem 20:7344–7347

    Article  Google Scholar 

  20. Sasso C, Elisa Zeno E, Petit-Conil M, Chaussy D, Belgacem N, Tapin-Lingua S, Beneventi D (2010) Highly conducting polypyrrole/cellulose nanocomposite films with enhanced mechanical properties. Macromol Mater Eng 295:934–941

    Article  Google Scholar 

  21. Leijonmarck S, Cornell A, Lindbergh G, Wågberg L (2013) Flexible nano-paper-based positive electrodes for Li-ion batteries-preparation process and properties. Nano Energy 2:794–800

    Article  Google Scholar 

  22. Huang X (2014) Performance evaluation of a non-woven lithium ion battery separator prepared through a paper-making process. J Power Source 256:96–101

    Article  Google Scholar 

  23. Kim J-H, Kim J-H, Choi E-S, Yu HK, Kim JH, Wu Q, Chun S-J, Lee S-Y, Lee S-Y (2013) Colloidal silica nanoparticle assisted structural control of cellulose nanofiber paper separators for lithium-ion batteries. J Power Source 242:533–540

    Article  Google Scholar 

  24. Zhang J, Yue L, Kong Q, Liu Z, Zhou X, Zhang C, Xu Q, Zhang B, Ding G, Qin B, Duan Y, Wang Q, Yao J, Cui G, Chen L (2014) Sustainable, heat resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci Rep 4:3935. doi:10.1038/srep03935

    Google Scholar 

  25. Leijonmarck S, Cornell A, Lindbergh G, Wagberg L (2013) Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J Mater Chem A 1:4671–4677

    Article  Google Scholar 

  26. Stana-Kleinschek K, Ribitsch V (1998) Electrokinetic properties of processed cellulose fibers. Colloids Surf A 140:127–138

    Article  Google Scholar 

  27. Fall AB, Lindström T, Sundman O, Ödberg L, Wagberg L (2011) Colloidal stability of aqueous nanofibrillated cellulose dispersions. Langmuir 27:11332–11338

    Article  Google Scholar 

  28. Maouche-Chergui S, Grohens Y, Balnois E, Lebeau B (2014) Adhesion of silica particles on thin polymer films of flax cell wall. Mater Sci Appl 5:953–965

    Google Scholar 

  29. Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42:2204–2212

    Article  Google Scholar 

  30. Holmberg M, Wigren R, Erlandsson R, Claesson PM (1997) Interactions between cellulose and colloidal silica in the presence of polyelectrolytes. Colloids Surf A 129–130:175–183

    Article  Google Scholar 

  31. Chun S-J, Choi E-S, Lee E-H, Kim JH, Lee S-Y, Lee S-Y (2012) Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries. J Mater Chem 22:16618–16626

    Article  Google Scholar 

  32. Koubaa A, Koran Z (1995) Measure of the internal bond strength of paper/board. Tappi J 78:103–111

    Google Scholar 

Download references

Acknowledgements

Authors wish to thank the Grenoble Institute of Technology (SEI 2012) and Gravit (Papel project) for supporting this Project. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—Grant agreement no ANR-11-LABX-0030) and of the Energies du Futur and PolyNat Carnot Institutes (Investissements d’Avenir—Grant agreements no ANR-11-CARN-007-01 and ANR-11-CARN-030-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Beneventi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krol, L.F., Beneventi, D., Alloin, F. et al. Microfibrillated cellulose-SiO2 composite nanopapers produced by spray deposition. J Mater Sci 50, 4095–4103 (2015). https://doi.org/10.1007/s10853-015-8965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-8965-5

Keywords

Navigation