Skip to main content

Advertisement

Log in

Spark plasma sintering of ductile ceramic particles: study of LiF

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Densification of cuboidal micrometer-sized lithium fluoride particles as ductile ceramic by spark plasma sintering (SPS) was investigated. Specimens were fabricated at different pressures and temperature conditions, ranging from 2 to 100 MPa at 500 °C and from 200 to 700 °C under 100 MPa of applied pressure, respectively. Dense specimens of 99 % relative density were fabricated by heating to 500 °C under constant pressure of 100 MPa. The densification showed first compaction by particle rearrangement, followed by plastic deformation via dislocation glide. Hot-pressing models were used to describe the densification by considering the temperature dependences of the yield stress, the strain hardening behavior and coefficients, and the pore size and shape dependences on the applied stress. A good agreement was found between the experimental and the theoretical densification curves. At low pressure of 2 MPa, the densification occurs by particle sliding, assisted by viscous flow at their surfaces, and local plastic deformation at the particle contacts, due to the intensified local stress. Finally, the micrometer-sized structural features and the contiguity achieved by plastic deformation at the start of spark plasma sintering (SPS) nullify any field effects in this model system at higher pressures; good agreement was obtained with expected conventional hot pressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garay JE, Glade SC, Anselmi-Tamburini U, Asoka-Kumar P, Munir ZA (2004) Appl Phys Lett 85:573

    Article  Google Scholar 

  2. Olevsky EA, Froyen L (2009) J Am Ceram Soc 92:S122

    Article  Google Scholar 

  3. Chaim R (2013) J Mater Sci 48:502. doi:10.1007/s10853-012-6764-9

    Article  Google Scholar 

  4. Holland TR, Anselmi-Tamburini U, Quach DV, Tran TB, Mukherjee AK (2012) J Eur Ceram Soc 32:3659

    Article  Google Scholar 

  5. Chaim R, Marder R, Estournés C, Shen Z (2012) Adv Appl Ceram 111:280

    Article  Google Scholar 

  6. Conrad H (2002) Mat Sci Eng A322:100

    Article  Google Scholar 

  7. Gilman JJ, Johnston WG (1960) J Appl Phys 31:687

    Article  Google Scholar 

  8. Johnston WG (1961) J Appl Phys 33:2050

    Article  Google Scholar 

  9. Fotedar HL, Stoebe TG (1968) Scripta Metall 2:443

    Article  Google Scholar 

  10. Verrall RA, Fields RJ, Ashby MF (1977) J Am Ceram Soc 60:211

    Article  Google Scholar 

  11. Marder R, Chaim R, Chevallier G, Estournes C (2011) J Eur Ceram Soc 31:1057

    Article  Google Scholar 

  12. Reed JS (1995) Principles of ceramics processing. Wiley, New York

    Google Scholar 

  13. Cropper DR, Langdon TG (1968) Phil Mag 18:1181

    Article  Google Scholar 

  14. German RM (1989) Particle packing characteristics. Metal Powder Industries Federation, Princetown

    Google Scholar 

  15. Budworth DW, Pask JJ (1963) J Am Ceram Soc 46:560

    Article  Google Scholar 

  16. Gilman JJ (2003) Electronic Basis of the Strength of Materials. University Press, Cambridge

    Google Scholar 

  17. Skvortsova NP (1996) Cryst Res Technol 31:373

    Article  Google Scholar 

  18. Gilman JJ (1959) Aust J Phys 13:327

    Article  Google Scholar 

  19. Scott WD, Pask JA (1963) J Am Ceram Soc 46:284

    Article  Google Scholar 

  20. Arzt E, Ashby MF, Easterling KE (1983) Metall Trans A 14A:211

    Article  Google Scholar 

  21. Green DJ (1998) An Introduction to the mechanical properties of ceramics. University Press, Cambridge

    Book  Google Scholar 

  22. Helle AS, Easterling KE, Ashby MF (1985) Acta Metall 33:2163

    Article  Google Scholar 

  23. Hoover DB, Washburn J (1962) J Appl Phys 33:11

    Article  Google Scholar 

  24. Straffelini G (2005) Powder Metall 48:189

    Article  Google Scholar 

  25. Fotedar HL, Stoebe TG (1975) Phys Status Solidi A 31:399

    Article  Google Scholar 

  26. Shand EB (1968) In: Hausner HH, Gonser BW (eds) Modern Materials: V.6: Advances in Development and Applications Academic Press. New York, pp, p 247

    Google Scholar 

  27. Stoebe TG, Huggins RA (1966) J Mater Sci 1:117. doi:10.1007/BF00550100

    Article  Google Scholar 

  28. Bullard JW, Searcy AW (1997) J Am Ceram Soc 80:2395

    Article  Google Scholar 

  29. Gilman JJ (1960) J Appl Phys 31:2208

    Article  Google Scholar 

  30. Ives MB, Plewes JT (1965) J Chem Phys 42:293

    Article  Google Scholar 

  31. Matzke HJ (1971) J Phys Chem Solids 32:437

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Nahum Frage for providing the FCT facility at the BGU. R. Marder acknowledges the support of the fellowship from the Women in Science program of the Israel Ministry of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Marder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marder, R., Estournès, C., Chevallier, G. et al. Spark plasma sintering of ductile ceramic particles: study of LiF. J Mater Sci 49, 5237–5245 (2014). https://doi.org/10.1007/s10853-013-7786-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7786-7

Keywords

Navigation