Skip to main content
Log in

A calcium phosphate cryogel for alkaline phosphatase encapsulation

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

There has been significant interest in the development of biomaterials that can localise drugs, enzymes and other therapeutic molecules and be well tolerated in the body. To date, the majority of research in this area has focussed on the formulation and refinement of silica-based gels. Whilst significant progress has been made in optimising silica gel materials, their manufacture typically requires the use of toxic precursors. Here we report the encapsulation of alkaline phosphatase (ALP) in a calcium phosphate-based cryogel. The activity of the ALP following encapsulation, over a period of 14 days, was evaluated and compared with the activity of horseradish peroxidise (HRP), a model enzyme often used in encapsulation studies. Furthermore, the chemical and structural properties exhibited by the gel were determined using X-ray diffraction, helium pycnometry and mercury porosimetry. It was found that when encapsulated in the gel, the activity of ALP was preserved and remained higher than when aged for an equivalent amount of time free in solution. In the case of HRP, however, encapsulation reduced enzyme activity. This was attributed to the different sizes and charges exhibited by the substrates of these two enzymes and the associated diffusional limitations through the mesopores of the gel structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jin W, Brennan JD (2002) Anal Chim Acta 461:1

    Article  Google Scholar 

  2. Kadnikova EN, Kostić NM (2002) J Mol Catal 18:39

    Article  Google Scholar 

  3. Radin S, Ducheyne P, Kamplain T et al (2001) J Biomed Mater Res 57:313

    Article  PubMed  Google Scholar 

  4. Bhatia RB, Brinker CJ, Gupta AK, Singh AK (2002) Chem Mater 12:2434

    Article  Google Scholar 

  5. Masahiro F, Kumi S, Kaoru H et al (2007) J Biomed Mater Res 81A:103

    Article  Google Scholar 

  6. Lin T-Y, Wu C-H, Brennan JD (2007) Biosensors Bioelectron 22:1861

    Article  Google Scholar 

  7. Wang G, Xu J-J, Chen H-Y, Lu Z-H (2003) Biosensors Bioelectron 18:335

    Article  Google Scholar 

  8. Voss R, Brook MA, Thompson J et al (2007) J Mater Chem 17:4854

    Article  Google Scholar 

  9. Miller SA, Hong ED, Wright D (2006) Macromol Biosci 6:839

    Article  PubMed  Google Scholar 

  10. Kitsugi T, Nakamara T, Oka M et al (1995) Calcif Tissue Int 57:155

    Article  PubMed  Google Scholar 

  11. Appleford MR, Oh S, Oh N et al (2009) J Biomed Mater Res A 89A:1019

    Article  Google Scholar 

  12. Kitsugi T, Yamamuro T, Nakamura T et al (1993) Biomaterials 14:216

    Article  PubMed  Google Scholar 

  13. Brown WE, Chow LC (1983) J Dent Res 62:672

    Google Scholar 

  14. Ruhé PQ, Kroese-Deutman HC, Wolke JGC et al (2004) Biomaterials 25:2123

    Article  PubMed  Google Scholar 

  15. Kroese-Deutmana HC, Ruhé PQ, Spauwen PHM et al (2005) Biomaterials 26:1131

    Article  Google Scholar 

  16. Otsuka M, Nakahigashi Y, Matsuda Y et al (1994) J Pham Sci 83:1569

    Article  Google Scholar 

  17. Bohner M, Lemaître J, Van Landuyt P et al (1997) J Pham Sci 86:565

    Article  Google Scholar 

  18. Barralet JE, Aldred S, Wright AJ et al (2002) J Biomed Mater Res 60:360

    Article  PubMed  Google Scholar 

  19. Nishioka T, Tomatsu S, Gutierrez MA et al (2006) Mol Gel Metab 88:244

    Article  Google Scholar 

  20. Beortsen W, van den Bos T (1992) J Clin Invest 89:1974

    Article  Google Scholar 

  21. Hessle L, Johnson KA, Anderson HC et al (2002) PNAS 99:9445

    Article  PubMed  ADS  Google Scholar 

  22. Bernhardt A, Lode A, Boxberger S et al (2008) J Mater Sci Mater Med 19:269

    Article  PubMed  Google Scholar 

  23. Anderson HC, Sipe JB, Hessle L et al (2004) Am J Pathol 164:841

    PubMed  Google Scholar 

  24. Braun S, Rappoport S, Zusman R et al (1990) Mater Lett 10:1

    Article  Google Scholar 

  25. Frenkel-Mullerad H, Avnir D (2005) J Am Chem Soc 127:8077

    Article  PubMed  Google Scholar 

  26. Wang Y, Caruso F (2005) Chem Mater 17:953

    Article  Google Scholar 

  27. Xu Y, Cruz T, Pritzker P (1991) J Rheumatol 18:1606

    PubMed  Google Scholar 

  28. Nicoll SB, Radin S, Santost EM et al (1997) Biomaterials 18:853

    Article  PubMed  Google Scholar 

  29. Lobel KD, Hench LL (1998) J Biomed Mater Res 39:575

    Article  PubMed  Google Scholar 

  30. Palazzo B, Sidoti MC, Roveri N et al (2005) Mater Sci Eng C 25:207

    Article  Google Scholar 

  31. Xu QG, Tanaka Y, Czernuszka JT (2007) Biomaterials 28:2687

    Article  PubMed  Google Scholar 

  32. Gbureck U, Vorndran E, Barralet JE (2008) Acta Biomater 4:1480

    Article  PubMed  Google Scholar 

  33. Filmon R, Baslé MF, Atmani H, Chappard D (2002) Bone 30:152

    Article  PubMed  Google Scholar 

  34. Osathanon T, Giachelli CM, Somerman MJ (2009) Biomaterials 30:4513

    Article  PubMed  Google Scholar 

  35. Omelonl S, Georgiou J, Henneman ZJ et al (2004) PLoSONE 4:1

    Google Scholar 

  36. Boyan BD, Sylvia VL, Dean DD et al (1996) Connect Tissue Res 35:63

    Article  PubMed  Google Scholar 

  37. Wei Y, Xu J, Feng Q, Dong H, Lin M (2000) Mater Lett 44:6

    Article  Google Scholar 

  38. Silva RA, Carmona-Ribeiro AM, Petri DFS (2007) Int J Biol Macromol 41:404

    Article  PubMed  Google Scholar 

  39. Jain TK, Rov I, De TK, Maitra A (1998) J Am Chem Soc 120:11092

    Article  Google Scholar 

  40. Fleisch H, Bisaz S (1962) Nature 195:911

    Article  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

The DVS and mercury porosimeter used in this research was obtained, through Birmingham Science City: Innovative Uses for Advanced Materials in the Modern World (West Midlands Centre for Advanced Materials Project 2), with support from Advantage West Midlands (AWM) and part funded by the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liam M. Grover.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, P.J., Wynn-Jones, G. & Grover, L.M. A calcium phosphate cryogel for alkaline phosphatase encapsulation. J Mater Sci 45, 5257–5263 (2010). https://doi.org/10.1007/s10853-010-4568-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-010-4568-3

Keywords

Navigation