Skip to main content
Log in

A review of the development of three generations of small diameter silicon carbide fibres

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three generations of small diameter ceramic fibres based on polycrystalline silicon carbide have been developed over a period of thirty years. This has been possible due to studies into the relationships between the microstructures and properties of the fibres. A variety of techniques have been employed by research teams on three continents. The fibres are made by the conversion of polymer precursors to ceramic fibres and all three generations are presently produced commercially. The nature of the precursor and the techniques used for cross-linking have been varied in order to optimise both properties and cost of manufacture. It has been possible to improve the characteristics of the fibres as the processes involved in the cross-linking of the precursor fibres have been better understood and the mechanisms governing both room temperature and high temperature behaviour determined. The result is that, although first generation fibres were limited by a low Young's modulus at room temperature and by creep and instability of the structure at temperatures far lower than those limiting the behaviour of bulk silicon carbide, the third generation fibres shows many of the characteristics of stoichiometric silicon carbide. This remarkable improvement in characteristics has been due to a thorough understanding of the materials science governing the behaviour of these fibres which are reinforcements for ceramic matrix composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. YAJIMA, J. HAYASHI and M. OMORI, Chemistry Letters (1975) 931.

  2. F. E. WAWNER JR., in “Fibre Reinforcements for Composite Materials”, edited by A. R. Bunsell (Elsevier, Amsterdam, 1988) Ch. 8, p. 463.

  3. M. AKIYAMA, in “Fibre Reinforcements for Composite Materials”, edited by A. R. Bunsell (Elsevier, Amsterdam, 1988) Ch. 9, p. 371.

  4. S. YAJIMA, J. HAYASHI and M. OMORI et al.., Nature 261(5562) (1976) 683.

  5. S. YAJIMA, K. OKAMURA and J. HAYASHI et al., J. Am. Ceram. Soc. 59 (1976) 324.

    Article  CAS  Google Scholar 

  6. R. J. P. EMSLEY, in “Fine Ceramic Fibers”, edited by A. R. Bunsell and M-H. Berger (Marcel Dekker, NY, 1999), Ch. 4, p. 165.

  7. S. YAJIMA, Y. HASEGAWA and J. HAYASHI, et al., J. Mat. Sci. 13 (1978) 2569.

    Article  CAS  Google Scholar 

  8. Y. HASEGAWA, M. IIMURA and S. YAJIMA, ibid. 15 (1980) 720.

    Article  CAS  Google Scholar 

  9. Y. HASEGAWA and K. OKAMURA, ibid. 18 (1983) 3633.

    Article  CAS  Google Scholar 

  10. T. TAKI, K. OHAMURA and M. SATO, ibid. 24 (1989) 1263.

    Article  CAS  Google Scholar 

  11. S. YAJIMA, T. IWAI and Y. YAMAMURA, et al., ibid. 16 (1981) 1349.

    Article  CAS  Google Scholar 

  12. T. YAMAMURA, T. HURUSHIMA and M. KIMOTO, et al., in “High Tech Ceramics”, Materials Sci. Monographs 38A (Elsevier, Amsterdam, 1988) p. 737.

  13. W m. TOREKI, G. J. CHOI, C. D. BATICH, M. D. SACKS and M. SALEEM, Ceramic Eng. Sci. Proc. 13 (1992) 198.

    CAS  Google Scholar 

  14. M. D. SACKS, G. W., SCHEIFFELE, L. ZHANG, Y. YANG and J. J. BRENNAN, ibid. 19 (1998) 73.

    CAS  Google Scholar 

  15. G. SIMON and A. R. BUNSELL, J. Mat. Sci. 19 (1984) 3649.

    CAS  Google Scholar 

  16. L. C. SAWYER, M. JAMIESON and D. BRIKOWSKI et al., J. Am.Ceram. Soc. 70 (1987) 798.

    Article  CAS  Google Scholar 

  17. G. SIMON and A. R. BUNSELL, J. Mat. Sci. 19 (1984) 3658.

    CAS  Google Scholar 

  18. M. D. SACKS, J. Europ. Ceram. Soc. 19 (1999) 2305.

    Article  CAS  Google Scholar 

  19. A. R. BUNSELL and P. SCHWARTZ, in “Comprehensive Composite Materials”, edited by A. Kelly and C. Zweben (Elsevier, Oxford, 2000), Vol. 5, p. 4, 9.

  20. G. MORSCHER and J. DICARLO, J. Am. Ceram. Soc. 75(1) (1992) 136.

    Article  CAS  Google Scholar 

  21. L. PORTE and A. SARTRE, J. Mat. Sci. 24 (1989) 271.

    Article  CAS  Google Scholar 

  22. C. LAFFON, M. FLANK and P. LAGARDE, et al., ibid. 24 (1989) 1503.

    CAS  Google Scholar 

  23. P. LE COUSTUMER, M. MONTHIOUX and A. OBERLIN, J. Eur. Ceram. Soc. 11 (1993) 95.

    Article  CAS  Google Scholar 

  24. R. BODET, X. BOURRAT, J. LAMON and R. NASLAIN, J. Mat. Sci. 30 (1995) 661.

    Article  CAS  Google Scholar 

  25. J. LIPOWITZ, H. A. FREEMAN, R. T. CHEN and E. R. PRACK., Adv. Ceram. Mat. 2 (1987) 121.

    CAS  Google Scholar 

  26. J. LIPOWITZ, J. A. RABE, L. K. FREVEL and R. L., MILLER, J. Mat. Sci. 25 (1990) 2118.

    Article  CAS  Google Scholar 

  27. J. LIPOWITZ, Amer. Ceram. Bull. 70 (1991) 1888.

    CAS  Google Scholar 

  28. T. MAH, N. L. HECHT and D. E. MCCULLUM, et al., J. Mat. Sci. 19 (1984) 1191.

    Article  CAS  Google Scholar 

  29. T. J. CLARK, R. M. ARONS and J. B. STAMATOFF, et al., Ceramic Eng. Sci. Proc. 6 (1985) 576.

    CAS  Google Scholar 

  30. T. J. CLARK, E. R. PRACK, M. I. HAIDER and L. C. SAWYER, ibid. 8 (1987) 717.

    CAS  Google Scholar 

  31. T. SHIMOO, Y. MORISADA, and K. OKAMURA J. Mat. Sci. 37 (2002) 4361.

    Article  CAS  Google Scholar 

  32. T. SHIMOO, T. MORITA and K. OKAMURA ibid. 37 (2002) 3181.

    Article  CAS  Google Scholar 

  33. M. NARISAWA, T. SHIMOO and K. OKAMURA, et al., in “Fine Ceramic Fibers”, edited by A. R. Bunsell, and M-H. Berger (Marcel Dekker, NY, 1999) Ch. 5, p. 207.

  34. M. H. JASKOWIAC and A. DI CARLO, J. Am. Ceram. Soc. 72 (1989) 192.

    Article  Google Scholar 

  35. M. SUGIMOTO, T. SHIMOO, K. OKAMURA and T. SEGUCHI, ibid. 78 (1995) 1849.

    Article  CAS  Google Scholar 

  36. T. TAKI, K. OKAMURA and M. SATO, et al., J. Mat. Sci. Lett. 7 (1988) 209.

    Article  CAS  Google Scholar 

  37. S. YAJIMA, K. OKAMURA and T. MATSUZAWA, et al., Nature 279 (1979) 706.

    Article  CAS  Google Scholar 

  38. E. BOUILLON, F. LANGLAIS and R. PAILLER, et al., J. Mat. Sci. 26 (1991) 1333.

    Article  CAS  Google Scholar 

  39. M. TAKEDA, Y. IMAI and H. ICHIKAWA, Ceramic Eng. Sci. Proc. 12 (1991) 1007.

    CAS  Google Scholar 

  40. M. TAKEDA, Y. IMAI, H. ICHIKAWA and T. ISHIKAWA, ibid. 14 (1993) 540.

    CAS  Google Scholar 

  41. K. KUMAGAWA, Y. YAMAOKA, M. SHIBUYA and T. YAMANURA, ibid. 18 (1997) 113.

    CAS  Google Scholar 

  42. N. HOCHET, M.-H. BERGER and A. R. BUNSELL, J. Microsc. 185 (1997) 243

    Article  CAS  Google Scholar 

  43. M.-H. BERGER, N. HOCHET and A. R. BUNSELL, Ceramic Eng. Sci. Proc. 19 (1998) 39.

    CAS  Google Scholar 

  44. M.-H. BERGER and A. R. BUNSELL, Adv. Comp. Lett. 2 (1993) 87.

    Google Scholar 

  45. M.-H. BERGER, N. HOCHET and A. R. BUNSELL, J. Microsc. 177 (1995) 230.

    CAS  Google Scholar 

  46. M.-H. BERGER, N. HOCHET and A. R. BUNSELL, in “Fine Ceramic Fibers”, edited by A. R. Bunsell and M-H. Berger (Marcel Dekker, NY, 1999) Ch. 6, p. 231.

  47. M. TAKEDA, J. SAKAMOTO, Y. IMAI, H. ICHIKAWA and T. ISHIKAWA, Ceramic Eng. Sci. Proc. 15 (1994) 133.

    CAS  Google Scholar 

  48. M. NAGAMORI, J. BOIVIN and A. CLAVEAU, J. Mat. Sci. 30 (1995) 5449.

    Article  CAS  Google Scholar 

  49. G. CHOLLON, R. PAILLER and R. NASLAIN, et al., ibid. 32 (1997) 327.

    Article  CAS  Google Scholar 

  50. D. M. MIESKOWSKI, T. E. MITCHELL and A. H. HEUER, J. Am. Ceram. Soc. 67 (1984) C17.

    CAS  Google Scholar 

  51. K. KAKIMOTO, T. SHIMOO and K. OKAMURA, J. Ceramic Soc. of Japan 103 (1995) 557.

    CAS  Google Scholar 

  52. T. SHIMOO, F. TOYODA and K. OKAMURA, J. Am. Ceram. Soc. 83 (2000) 3811.

    Article  Google Scholar 

  53. T. SHIMOO, K. OKAMURA and T. MORITA, J. Mat. Sci. 38 (2003) 3089.

    Article  CAS  Google Scholar 

  54. D. J. PYSHER, N. JIA, R. BODET and R. E. TRESSLER, in “High performance composites for the 1990s”, edited by S. K. Ballard and F. Marikar (Minerals, Metals and Mat. Soc., 1991) p. 267.

  55. T. ISHIKAWA, S. KAJII, T. HISAYUKI and Y. KOHTOKU, Ceramic Eng. Sci. Proc. 19 (1998) 283.

    Article  CAS  Google Scholar 

  56. H. ICHIKAWA and T. ISHIKAWA, in “Comprehensive Composite Materials”, edited by A. Kelly, C. Zweben and T. Chou (Elsevier Sci. Oxford, 2000) Vol. 1, p. 107.

  57. J. LIPOWITZ and J. A. RABE, Ceramic Eng. Sci. Proc. 18 (1997) 147.

    CAS  Google Scholar 

  58. H.-M. YUN and J. A. DICARLO, ibid. 20 (1999) 259.

    CAS  Google Scholar 

  59. J. A. DICARLO and H.-M. YUN, in “Handbook of ceramic composites”, edited by N. P. Bansal (Kluwer, Boston, 2005) p. 33.

  60. H. ICHIKAWA, K. OKAMURA, and T. SEGUCHI, in “High temperature ceramic matrix composites II”, edited by A. G. Evans and R. Naslain, Ceramic Transactions 58, (American Ceramic Soc., 1995) p. 65.

  61. M. D. SACKS, A. A. MORRONE, G. W. SCHEIFFELE and M. SALEEM, Ceramic Eng. Sci. Proc. 16 (1995) 25.

    CAS  Google Scholar 

  62. H. M. YUN and J. A. DI CARLO, NASA Glenn Research, Technical Memorandum. Vol. 1999–209284 (July, 1999)

  63. M.-H. BERGER, in”Advances in Ceramic Matrix Composites IX”, edited by N. P. Bansal, J. P. Singh, W. M. Kriven and H. Scheider, Ceramic Transactions 153 (American Ceramic Soc., 2003) p. 3.

  64. T. TANAKA, S. SHIBAYAMA, M. TAKEDA and A. YOKOYAMA, Ceram. Eng. Sci. Proc. 24 (2003) 217.

    CAS  Google Scholar 

  65. H. M. YUN, J. A. DI CARLO, R. T. BHATT and J. B. HURST, ibid. 24 (2003) 247.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunsell, A.R., Piant, A. A review of the development of three generations of small diameter silicon carbide fibres. J Mater Sci 41, 823–839 (2006). https://doi.org/10.1007/s10853-006-6566-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-006-6566-z

Keywords

Navigation