Skip to main content

Advertisement

Log in

A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm

  • Published:
Journal of Intelligent Manufacturing Aims and scope Submit manuscript

Abstract

The inherent deformation method has a significant advantage in evaluating the total welding deformations for large and complex welded structures. The prerequisite for applying this approach is that the inherent deformations of corresponding weld joints should be known beforehand. In this study, an intelligent model based on support vector machine (SVM) and genetic algorithm (GA) was established to predict the inherent deformations of a fillet-welded joint. The training samples were obtained from numerical experiments conducted by the thermal–elastic–plastic finite element analysis. In the developed SVM model, the welding speed, current, voltage and plate thickness were considered as input parameters, and the longitudinal and transverse inherent deformations were corresponding outputs. The correlation coefficients and percentage errors for all the samples were calculated to evaluate the prediction performance of the SVM model. The research results demonstrate that the SVM model optimized by GA can be used to assess the longitudinal and transverse inherent deformations for the T-joint fillet weld with acceptable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Ahmadzadeh, M., Fard, A. H., Saranjam, B., & Salimi, H. R. (2012). Prediction of residual stresses in gas arc welding by back propagation neural network. NDT and E International,52, 136–143.

    Google Scholar 

  • Ai, Y., Jiang, P., Shao, X., Wang, C., Li, P., Mi, G., et al. (2016). A defect-responsive optimization method for the fiber laser butt welding of dissimilar materials. Materials and Design,90, 669–681.

    Google Scholar 

  • Atabaki, M. M., Nikodinovski, M., Chenier, P., Ma, J., Liu, W., & Kovacevic, R. (2014). Experimental and numerical investigations of hybrid laser arc welding of aluminum alloys in the thick T-joint configuration. Optics & Laser Technology,59, 68–92.

    Google Scholar 

  • Ates, H. (2007). Prediction of gas metal arc welding parameters based on artificial neural networks. Materials and Design,28(7), 2015–2023.

    Google Scholar 

  • Baraka, A., Panoutsos, G., & Cater, S. (2015). A real-time quality monitoring framework for steel friction stir welding using computational intelligence. Journal of Manufacturing Processes,20, 137–148.

    Google Scholar 

  • Brickstad, B., & Josefson, B. L. (1998). A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes. International Journal of Pressure Vessels and Piping,75(1), 11–25.

    Google Scholar 

  • Chaki, S., Shanmugarajan, B., Ghosal, S., & Padmanabham, G. (2015). Application of integrated soft computing techniques for optimisation of hybrid CO2 laser-MIG welding process. Applied Soft Computing,30, 365–374.

    Google Scholar 

  • Chen, Z., Chen, Z., & Shenoi, R. A. (2015). Influence of welding sequence on welding deformation and residual stress of a stiffened plate structure. Ocean Engineering,106, 271–280.

    Google Scholar 

  • Chen, B. Q., & Soares, C. G. (2016). Effects of plate configurations on the weld induced deformations and strength of fillet-welded plates. Marine Structures,50, 243–259.

    Google Scholar 

  • Choobi, M. S., Haghpanahi, M., & Sedighi, M. (2012). Prediction of welding-induced angular distortions in thin butt-welded plates using artificial neural networks. Computational Materials Science,62, 152–159.

    Google Scholar 

  • Dabiri, M., Ghafouri, M., Raftar, H. R., & Björk, T. (2017). Neural network-based assessment of the stress concentration factor in a T-welded joint. Journal of Constructional Steel Research,128, 567–578.

    Google Scholar 

  • Das, B., Pal, S., & Bag, S. (2016). A combined wavelet packet and Hilbert-Huang transform for defect detection and modelling of weld strength in friction stir welding process. Journal of Manufacturing Processes,22, 260–268.

    Google Scholar 

  • Deng, D., Kiyoshima, S., Ogawa, K., Yanagida, N., & Saito, K. (2011). Predicting welding residual stresses in a dissimilar metal girth welded pipe using 3D finite element model with a simplified heat source. Nuclear Engineering and Design,241(1), 46–54.

    Google Scholar 

  • Deng, D., Liang, W., & Murakawa, H. (2007a). Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurements. Journal of Materials Processing Technology,183(2–3), 219–225.

    Google Scholar 

  • Deng, D., & Murakawa, H. (2008). Prediction of welding distortion and residual stress in a thin plate butt-welded joint. Computational Materials Science,43(2), 353–365.

    Google Scholar 

  • Deng, D., Murakawa, H., & Liang, W. (2007b). Numerical simulation of welding distortion in large structures. Computer Methods in Applied Mechanics and Engineering,196(45–48), 4613–4627.

    Google Scholar 

  • Deng, D., Murakawa, H., & Liang, W. (2008). Prediction of welding distortion in a curved plate structure by means of elastic finite element method. Journal of Materials Processing Technology,203(1–3), 252–266.

    Google Scholar 

  • Deng, D., Murakawa, H., & Shibahara, M. (2010). Investigations on welding distortion in an asymmetrical curved block by means of numerical simulation technology and experimental method. Computational Materials Science,48(1), 187–194.

    Google Scholar 

  • Deng, D., Sun, J., Dai, D., & Jiang, X. (2015). Influence of accelerated cooling condition on welding thermal cycle, residual stress, and deformation in SM490A steel ESW joint. Journal of Materials Engineering and Performance,24(9), 3487–3501.

    Google Scholar 

  • Dewan, M. W., Huggett, D. J., Liao, T. W., Wahab, M. A., & Okeil, A. M. (2016). Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network. Materials and Design,92, 288–299.

    Google Scholar 

  • Dey, V., Pratihar, D. K., Datta, G. L., Jha, M. N., Saha, T. K., & Bapat, A. V. (2009). Optimization of bead geometry in electron beam welding using a Genetic Algorithm. Journal of Materials Processing Technology,209(3), 1151–1157.

    Google Scholar 

  • Dhas, J. E. R., & Kumanan, S. (2016). Evolutionary fuzzy SVR modeling of weld residual stress. Applied Soft Computing,42, 423–430.

    Google Scholar 

  • Fu, G., Lourenço, M. I., Duan, M., & Estefen, S. F. (2016). Influence of the welding sequence on residual stress and distortion of fillet welded structures. Marine Structures,46, 30–55.

    Google Scholar 

  • Gao, Z., Shao, X., Jiang, P., Cao, L., Zhou, Q., Yue, C., et al. (2016). Parameters optimization of hybrid fiber laser-arc butt welding on 316L stainless steel using Kriging model and GA. Optics & Laser Technology,83, 153–162.

    Google Scholar 

  • Ghetiya, N. D., & Patel, K. M. (2014). Prediction of tensile strength in friction stir welded aluminium alloy using artificial neural network. Procedia Technology,14, 274–281.

    Google Scholar 

  • He, K., & Li, X. (2016). A quantitative estimation technique for welding quality using local mean decomposition and support vector machine. Journal of Intelligent Manufacturing,27(3), 1–9.

    Google Scholar 

  • Huang, W., & Kovacevic, R. (2011). A neural network and multiple regression method for the characterization of the depth of weld penetration in laser welding based on acoustic signatures. Journal of Intelligent Manufacturing,22(2), 131–143.

    Google Scholar 

  • Huang, Y., Wu, D., Zhang, Z., Chen, H., & Chen, S. (2017). EMD-based pulsed TIG welding process porosity defect detection and defect diagnosis using GA–SVM. Journal of Materials Processing Technology,239, 92–102.

    Google Scholar 

  • Islam, M., Buijk, A., Rais-Rohani, M., & Motoyama, K. (2015). Process parameter optimization of lap joint fillet weld based on FEM-RSM-GA integration technique. Advanced Engineering Software,79, 127–136.

    Google Scholar 

  • Jha, M. N., Pratihar, D. K., Bapat, A. V., Dey, V., Ali, M., & Bagchi, A. C. (2014). Knowledge-based systems using neural networks for electron beam welding process of reactive material (Zircaloy-4). Journal of Intelligent Manufacturing,25(6), 1315–1333.

    Google Scholar 

  • Jung, G. H., & Tsai, C. L. (2004). Fundamental studies on the effect of distortion control plans on angular distortion in fillet welded T-joints. Welding Journal,83(7), 213–223.

    Google Scholar 

  • Kang, K. W., Goo, B. C., Kim, J. H., Kim, D. K., & Kim, J. K. (2009). Experimental investigation on static and fatigue behavior of welded SM490A steel under low temperature. International Journal of Steel Structures,9(1), 85–91.

    Google Scholar 

  • Kanti, K. M., & Rao, P. S. (2008). Prediction of bead geometry in pulsed GMA welding using back propagation neural network. Journal of Materials Processing Technology,200(1–3), 300–305.

    Google Scholar 

  • Katherasan, D., Elias, J. V., Sathiya, P., & Haq, A. N. (2014). Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. Journal of Intelligent Manufacturing,25(1), 67–76.

    Google Scholar 

  • Kecman, V. (2001). Learning and soft computing. Cambridge, MA: MIT Press.

    Google Scholar 

  • Koo, Y. D., Yoo, K. H., & Man, G. N. (2017). Estimation of residual stress in welding of dissimilar metals at nuclear power plants using cascaded support vector regression. Nuclear Engineering and Technology,49(4), 817–824.

    Google Scholar 

  • Liang, W., Murakawa, H., & Deng, D. (2016). Estimating inherent deformation in thin-plate Al-alloy joint by means of inverse analysis with the help of cutting technique. Advanced Engineering Software,99, 89–99.

    Google Scholar 

  • Lin, H. L. (2012). The use of the Taguchi method with grey relational analysis and a neural network to optimize a novel GMA welding process. Journal of Intelligent Manufacturing,23(5), 1671–1680.

    Google Scholar 

  • Ma, N., Huang, H., & Murakawa, H. (2015). Effect of jig constraint position and pitch on welding deformation. Journal of Materials Processing Technology,221, 154–162.

    Google Scholar 

  • Man, G. N., Jin, W. K., Dong, H. L., & Kang, Y. J. (2008). Residual stress prediction of dissimilar metals welding at NPPs using support vector regression. Nuclear Engineering and Design,238(7), 1503–1510.

    Google Scholar 

  • Mathew, J., Moat, R. J., Paddea, S., Fitzpatrick, M. E., & Bouchard, P. J. (2017). Prediction of residual stresses in girth welded pipes using an artificial neural network approach. International Journal of Pressure Vessels and Piping,150, 89–95.

    Google Scholar 

  • Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, MA: MIT Press.

    Google Scholar 

  • Nagesh, D. S., & Datta, G. L. (2002). Prediction of weld bead geometry and penetration in shielded metal-arc welding using artificial neural networks. Journal of Materials Processing Technology,123(2), 303–312.

    Google Scholar 

  • Okuyucu, H., Kurt, A., & Arcaklioglu, E. (2007). Artificial neural network application to the friction stir welding of aluminum plates. Materials and Design,28(1), 78–84.

    Google Scholar 

  • Pal, S., Pal, S. K., & Samantaray, A. K. (2008). Artificial neural network modeling of weld joint strength prediction of a pulsed metal inert gas welding process using arc signals. Journal of Materials Processing Technology,202(1–3), 464–474.

    Google Scholar 

  • Pashazadeh, H., Gheisari, Y., & Hamedi, M. (2016). Statistical modeling and optimization of resistance spot welding process parameters using neural networks and multi-objective genetic algorithm. Journal of Intelligent Manufacturing,27(3), 549–559.

    Google Scholar 

  • Perić, M., Tonković, Z., Garašić, I., & Vuherer, T. (2016). An engineering approach for a T-joint fillet welding simulation using simplified material properties. Ocean Engineering,128, 13–21.

    Google Scholar 

  • Perić, M., Tonković, Z., Rodić, A., Surjak, M., Garašić, I., Boras, I., et al. (2014). Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld. Materials and Design,53, 1052–1063.

    Google Scholar 

  • Radaj, D. (1992). Heat effects of welding: Temperature field, residual stress and distortion. Berlin: Springer.

    Google Scholar 

  • Sathiya, P., Panneerselvam, K., & Jaleel, M. Y. A. (2012). Optimization of laser welding process parameters for super austenitic stainless steel using artificial neural networks and genetic algorithm. Materials and Design,36, 490–498.

    Google Scholar 

  • Satpathy, M. P., Moharana, B. R., Dewangan, S., & Sahoo, S. K. (2015). Modeling and optimization of ultrasonic metal welding on dissimilar sheets using fuzzy based genetic algorithm approach. Engineering Science and Technology, an International Journal,18(4), 634–647.

    Google Scholar 

  • Shen, J., & Chen, Z. (2014). Welding simulation of fillet-welded joint using shell elements with section integration. Journal of Materials Processing Technology,214(11), 2529–2536.

    Google Scholar 

  • Sudhakaran, R., Murugan, V. V., & Sivasakthivel, P. S. (2012). Optimization of process parameters to minimize angular distortion in gas tungsten arc welded stainless steel 202 grade plates using particle swarm optimization. Journal of Engineering Science and Technology,7(2), 195–208.

    Google Scholar 

  • Tarng, Y. S., Wu, J. L., Yeh, S. S., & Juang, S. C. (1999). Intelligent modelling and optimization of the gas tungsten arc welding process. Journal of Intelligent Manufacturing,10(1), 73–79.

    Google Scholar 

  • Teimouri, R., & Baseri, H. (2015). Forward and backward predictions of the friction stir welding parameters using fuzzy-artificial bee colony-imperialist competitive algorithm systems. Journal of Intelligent Manufacturing,26(2), 1–13.

    Google Scholar 

  • Tian, L., Luo, Y., Wang, Y., & Wu, X. (2014). Prediction of transverse and angular distortions of gas tungsten arc bead-on-plate welding using artificial neural network. Materials and Design,54, 458–472.

    Google Scholar 

  • Ueda, Y., & Ma, N. X. (1994). Measuring method of three dimensional residual stress with aid of distribution function of inherent strain. Transactions of JWRI,23(1), 123–130.

    Google Scholar 

  • Ueda, Y., Murakawa, H., & Ma, N. (2012). Welding deformation and residual stress prevention. Butterworth Heinemann: Elsevier Publishing.

    Google Scholar 

  • Ueda, Y., Murakawa, H., Nakacho, K., & Ma, N. X. (1995). Establishment of computational welding mechanics. Transactions of JWRI,24(2), 73–86.

    Google Scholar 

  • Ueda, Y., & Yuan, M. G. (1993). Prediction of residual stresses in butt welded plates using inherent strains. Journal of Engineering Materials and Technology,115(4), 417–423.

    Google Scholar 

  • Vakili-Tahami, F., & Ziaei-Asl, A. (2013). Numerical and experimental investigation of T-shape fillet welding of AISI 304 stainless steel plates. Materials and Design,47(9), 615–623.

    Google Scholar 

  • Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer.

    Google Scholar 

  • Vetriselvan, R., Devakumaran, K., Sathiya, P., & Ravichandran, G. (2017). Transient out-of-plane distortion of multi-pass fillet welded tube to pipe T-joints. Defence Technology,13(2), 77–85.

    Google Scholar 

  • Wang, J. (2012). Investigation of buckling distortion of ship structure due to welding assembly using inherent deformation theory. Doctoral thesis, Osaka University.

  • Wang, J., Rashed, S., & Murakawa, H. (2014). Mechanism investigation of welding induced buckling using inherent deformation method. Thin-Walled Structures,80, 103–119.

    Google Scholar 

  • Wang, J., Rashed, S., Murakawa, H., & Luo, Y. (2013a). Numerical prediction and mitigation of out-of-plane welding distortion in ship panel structure by elastic FE analysis. Marine Structures,34, 135–155.

    Google Scholar 

  • Wang, J., Yin, X., & Murakawa, H. (2013b). Experimental and computational analysis of residual buckling distortion of bead-on-plate welded joint. Journal of Materials Processing Technology,213(8), 1447–1458.

    Google Scholar 

  • Wang, J., Yuan, H., Ma, N., & Murakawa, H. (2016). Recent research on welding distortion prediction in thin plate fabrication by means of elastic FE computation. Marine Structures,47, 42–59.

    Google Scholar 

  • Wang, R., Zhang, J., Serizawa, H., & Murakawa, H. (2009). Study of welding inherent deformations in thin plates based on finite element analysis using interactive substructure method. Materials and Design,30(9), 3474–3481.

    Google Scholar 

  • Wang, J., Zhao, H., Zou, J., Zhou, H., Wu, Z., & Du, S. (2017). Welding distortion prediction with elastic FE analysis and mitigation practice in fabrication of cantilever beam component of jack-up drilling rig. Ocean Engineering,130, 25–39.

    Google Scholar 

  • Wu, D., Chen, H., Huang, Y., He, Y., Hu, M., & Chen, S. (2017). Monitoring of weld joint penetration during variable polarity plasma arc welding based on the keyhole characteristics and PSO-ANFIS. Journal of Materials Processing Technology,239, 113–124.

    Google Scholar 

  • Zhang, Y., Gao, X., & Katayama, S. (2015). Weld appearance prediction with BP neural network improved by genetic algorithm during disk laser welding. Journal of Manufacturing Systems,34, 53–59.

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the National Natural Science Foundation of China (NSFC) under Grant No. 51708346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Luo, Y. A study on the prediction of inherent deformation in fillet-welded joint using support vector machine and genetic optimization algorithm. J Intell Manuf 31, 575–596 (2020). https://doi.org/10.1007/s10845-019-01469-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10845-019-01469-w

Keywords

Navigation