Skip to main content
Log in

Comparison of left atrial electrophysiologic abnormalities during sinus rhythm in patients with different type of atrial fibrillation

  • Published:
Journal of Interventional Cardiac Electrophysiology Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study is to explore the left atrium (LA) electrophysiologic abnormalities in atrial fibrillation (AF) patients detected during sinus rhythm and to determine the relationship between the type of AF and the electrophysiologic substrate in the LA.

Methods

Eighty patients with AF (30 paroxysmal AF, 22 persistent AF, and 28 long-standing AF) and 20 age- and sex-matched patients with left-sided accessory pathway were prospectively studied. High-density three-dimensional electroanatomic mapping was performed during sinus rhythm in LA, which was divided into six segments for regional analysis. Mean bipolar voltage, low voltage zone (LVZ) distribution, LA activation time, and electrogram complexity were assessed.

Results

The LA mean voltage was 3.67 ± 0.68 mV in no AF group, 2.16 ± 0.63 mV in the paroxysmal, 1.81 ± 0.36 mV in the persistent, and 1.48 ± 0.34 mV in the long-standing AF patients (P < 0.001). The total LA activation time was 75.3 ± 5.4 ms in no AF, 89.7 ± 12.3 ms in paroxysmal AF, 104.9 ± 6.1 ms in persistent AF, and 115.6 ± 12.1 ms in the long-standing AF patients, respectively (P < 0.001). With the progression of AF, there was a higher incidence of LVZ detection and increased prevalence of complex electrograms with 95 % of complex electrograms in areas with the bipolar voltage ≤ 1.3 mV in persistent and long-standing AF patients.

Conclusion

Patients with AF have abnormal electrophysiologic substrate in sinus rhythm characterized by lower mean bipolar voltage, more prevalent complex electrograms, and longer LA activation time. This substrate progresses parallel to progression of AF type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kistler, P. M., Sanders, P., Fynn, S. P., Stevenson, I. H., Spence, S. J., Vohra, J. K., et al. (2004). Electrophysiologic and electroanatomic changes in the human atrium associated with age. Journal of the American College of Cardiology, 44, 109–116.

    Article  PubMed  Google Scholar 

  2. Healey, J. S., Baranchuk, A., Crystal, E., Morillo, C. A., Garfinkle, M., Yusuf, S., et al. (2005). Prevention of atrial fibrillation with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers: A meta-analysis. Journal of the American College of Cardiology, 45, 1832–1839.

    Article  CAS  PubMed  Google Scholar 

  3. Sanders, P., Morton, J. B., Davidson, N. C., Spence, S. J., Vohra, J. K., Sparks, P. B., et al. (2003). Electrical remodeling of the atria in congestive heart failure: Electrophysiological and electroanatomic mapping in humans. Circulation, 108, 1461–1468.

    Article  PubMed  Google Scholar 

  4. Verheule, S., Wilson, E., Everett, T., Shanbhag, S., Golden, C., & Olgin, J. (2003). Alterations in atrial electrophysiology and tissue structure in a canine model of chronic atrial dilatation due to mitral regurgitation. Circulation, 107, 2615–2622.

    PubMed Central  PubMed  Google Scholar 

  5. Corradi, D., Callegari, S., Benussi, S., Maestri, R., Pastori, P., Nascimbene, S., Bosio, S., et al. (2005). Myocyte changes and their left atrial distribution in patients with chronic atrial fibrillation related to mitral valve disease. Human Pathology, 36, 1080–1089.

    Article  PubMed  Google Scholar 

  6. He, X., Gao, X., Peng, L., Wang, S., Zhu, Y., Ma, H., et al. (2011). Atrial fibrillation induces myocardial fibrosis through angiotensin II type 1 receptor-specific Arkadia-mediated downregulation of Smad 7. Circulation Research, 108, 164–175.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Kawara, T., Derksen, R., de Groot, J. R., Coronel, R., Tasseron, S., Linnenbank, A. C., et al. (2001). Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation, 104, 3069–3075.

    Article  CAS  PubMed  Google Scholar 

  8. Spach, M. S., & Dolber, P. C. (1986). Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle: Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circulation Research, 58, 356–371.

    Article  CAS  PubMed  Google Scholar 

  9. Verma, A., Wazni, O. M., Marrouche, N. F., Martin, D. O., Kilicaslan, F., Minor, S., et al. (2005). Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: An independent predictor of procedural failure. Journal of the American College of Cardiology, 45, 285–292.

    Article  PubMed  Google Scholar 

  10. Chang, S. L., Tai, C. T., Lin, Y. J., Wongcharoen, W., Lo, L. W., Tuan, T. C., Udyavar, A. R., Chang, S. H., Tsao, H. M., Hsieh, M. H., Hu, Y. F., Chen, Y. J., & Chen, S. A. (2007). Biatrial substrate properties in patients with atrial fibrillation. Journal of Cardiovascular Electrophysiology, 18, 1134–1139.

    Article  PubMed  Google Scholar 

  11. Stiles, M. K., John, B., Wong, C. X., Kuklik, P., Brooks, A. G., Lau, D. H., Dimitri, H., et al. (2009). Paroxysmal atrial fibrillation is associated with abnormal atrial substrate: Characterizing the “second factor”. Journal of the American College of Cardiology, 53, 1182–1191.

    Article  PubMed  Google Scholar 

  12. Teh, A. W., Kistler, P. M., Lee, G., Medi, C., Heck, P. M., Spence, S. J., et al. (2012). Electroanatomic remodeling of the left atrium in paroxysmal and persistent atrial fibrillation patients without structural heart disease. Journal of Cardiovascular Electrophysiology, 23, 232–238.

    Article  PubMed  Google Scholar 

  13. Marcus, G. M., Yang, Y., Varosy, P. D., Ordovas, K., Tseng, Z. H., Badhwar, N., et al. (2007). Regional left atrial voltage in patients with atrial fibrillation. Heart Rhythm, 4, 138–144.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Assayag, P., Carre, F., Chevalier, B., Delcayre, C., Mansier, P., & Swynghedauw, B. (1997). Compensated cardiac hypertrophy: Arrhythmogenicity and the new myocardial phenotype. I. Fibrosis. Cardiovascular Research, 34, 439–444.

    Article  CAS  PubMed  Google Scholar 

  15. Silver, M. A., Pick, R., Brilla, C. G., Jalil, J. E., Janicki, J. S., & Weber, K. T. (1990). Reactive and reparative fibrillar collagen remodeling in the hypertrophied rat left ventricle: Two experimental models of myocardial fibrosis. Cardiovascular Research, 24, 741–747.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, J. L., Tai, C. T., Lin, Y. J., Ting, C. T., Chen, Y. T., Chang, M. S., et al. (2006). The mechanisms of an increased dominant frequency in the left atrial posterior wall during atrial fibrillation in acute atrial dilatation. Journal of Cardiovascular Electrophysiology, 17, 178–188.

    Article  PubMed  Google Scholar 

  17. Lellouche, N., Buch, E., Celigoj, A., Siegerman, C., Cesario, D., De Diego, C., et al. (2007). Functional characterization of atrial electrograms in sinus rhythm delineates sites of parasympathetic innervation in patients with paroxysmal atrial fibrillation. Journal of the American College of Cardiology, 50, 1324–1331.

    Article  PubMed  Google Scholar 

  18. Miyamoto, K., Tsuchiya, T., Narita, S., Yamaguchi, T., Nagamoto, Y., Ando, S., et al. (2009). Bipolar electrogram amplitudes in the left atrium are related to local conduction velocity in patients with atrial fibrillation. Europace, 11, 1597–1605.

    Article  PubMed  Google Scholar 

  19. Ju, W., Yang, B., Chen, H., Zhang, F., Zhai, L., Cao, K., et al. (2011). Localized reentry as a novel type of the proarrhythmic effects of linear ablation in the left atrium. Pacing and Clinical Electrophysiology, 34, 919–926.

    Article  PubMed  Google Scholar 

  20. Boldt, A., Wetzel, U., Lauschke, J., Weigl, J., Gummert, J., Hindricks, G., et al. (2004). Fibrosis in left atrial tissue of patients with atrial fibrillation with and without underlying mitral valve disease. Heart, 90, 400–405.

    Article  CAS  PubMed  Google Scholar 

  21. Luo, M. H., Li, Y. S., & Yang, K. P. (2006). Fibrosis of collagen I and remodeling of connexin 43 in atrial myocardium of patients with atrial fibrillation. Cardiology, 107, 248–253.

    Article  PubMed  Google Scholar 

  22. Eckstein, J., Verheule, S., de Groot, N. M., Allessie, M., & Schotten, U. (2008). Mechanisms of perpetuation of atrial fibrillation in chronically dilated atria. Progress in Biophysics and Molecular Biology, 97, 435–451.

    Article  PubMed  Google Scholar 

  23. Lau, D. H., Psaltis, P. J., Mackenzie, L., Kelly, D. J., Carbone, A., Worthington, M., et al. (2011). Atrial remodeling in an ovine model of anthracycline-induced nonischemic cardiomyopathy: Remodeling of the same sort. Journal of Cardiovascular Electrophysiology, 22, 175–182.

    PubMed  Google Scholar 

  24. Verheule, S., Sato, T., Everett, T., Engle, S. K., Otten, D., Rubart-von der Lohe, M., et al. (2004). Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circulation Research, 94, 1458–1465.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Burstein, B., Qi, X. Y., Yeh, Y. H., Calderone, A., & Nattel, S. (2007). Atrial cardiomyocyte tachycardia alters cardiac fibroblast function: A novel consideration in atrial remodeling. Cardiovascular Research, 76, 442–452.

    Article  CAS  PubMed  Google Scholar 

  26. Ausma, J., Litjens, N., Lenders, M. H., Duimel, H., Mast, F., Wouters, L., et al. (2001). Time course of atrial fibrillation-induced cellular structural remodeling in atria of the goat. Journal of Molecular and Cellular Cardiology, 33, 2083–2094.

    Article  CAS  PubMed  Google Scholar 

  27. Avitall, B., Bi, J., Mykytsey, A., & Chicos, A. (2008). Atrial and ventricular fibrosis induced by atrial fibrillation: Evidence to support early rhythm control. Heart Rhythm, 5, 839–845.

    Article  PubMed  Google Scholar 

  28. Goette, A., Honeycutt, C., & Langberg, J. J. (1996). Electrical remodeling in atrial fibrillation, time course and mechanisms. Circulation, 94, 2968–2974.

    Article  CAS  PubMed  Google Scholar 

  29. Fynn, S. P., Todd, D. M., Hobbs, W. J., Armstrong, K. L., Fitzpatrick, A. P., & Garratt, C. J. (2002). Clinical evaluation of a policy of early repeated internal cardioversion for recurrence of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 13, 135–141.

    Article  PubMed  Google Scholar 

  30. Hirayama, Y., Atarashi, H., Kobayashi, Y., Horie, T., Iwasaki, Y., Maruyama, M., et al. (2005). Angiotensin-converting enzyme inhibitor therapy inhibits the progression from paroxysmal atrial fibrillation to chronic atrial fibrillation. Circulation Journal, 69, 671–676.

    Article  CAS  PubMed  Google Scholar 

  31. Madrid, A. H., Bueno, M. G., Robollo, J. M., Marín, I., Peña, G., Bernal, E., et al. (2002). Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: A prospective and randomized study. Circulation, 106, 331–336.

    Article  CAS  PubMed  Google Scholar 

  32. Marchlinski, F. E., Callans, D. J., Gottlieb, C. D., & Zado, E. (2000). Linear ablation lesions for control of unmappable ventricular tachycardia in patients with ischemic and nonischemic cardiomyopathy. Circulation, 101, 1288–1296.

    Article  CAS  PubMed  Google Scholar 

  33. Mahnkopf, C., Badger, T. J., Burgon, N. S., Daccarett, M., Haslam, T. S., Badger, C. T., et al. (2010). Evaluation of the left atrial substrate in patients with lone atrial fibrillation using delayed-enhanced MRI: Implications for disease progression and response to catheter ablation. Heart Rhythm, 7, 1475–1481.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Jadidi, A. S., Duncan, E., Miyazaki, S., Lellouche, N., Shah, A. J., Forclaz, A., et al. (2012). Functional nature of electrogram fractionation demonstrated by left atrial high-density mapping. Circulation. Arrhythmia and Electrophysiology, 5, 32–42.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Saghy, L., Callans, D. J., Garcia, F., Lin, D., Marchlinski, F. E., Riley, M., et al. (2012). Is there a relationship between complex fractionated atrial electrograms recorded during atrial fibrillation and sinus rhythm fractionation? Heart Rhythm, 9, 181–188.

    Article  PubMed  Google Scholar 

Download references

Fundings

This work was supported by the Program for Development of Innovative Research Team in the First Affiliated Hospital of Nanjing Medical University, People’s Republic of China (IRT-004) and the Project of National Scientific Fund Committee (81070156), People’s Republic of China

Competing interests

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minglong Chen.

Additional information

Drs. Yazhou Lin and Bing Yang contributed equally to literature search, data collection, data analysis, data interpretation, and writing. Dr. Fermin Garcia contributed to data analysis and data interpretation. Drs. Weizhu Ju, Fengxiang Zhang, Hongwu Chen, and Jinbo Yu contributed to data collection. Dr. Kejiang Cao was responsible for data interpretation. Drs. David Callans and Francis Marchlinski were responsible for study design and language polishing. Dr. Minglong Chen was the corresponding author who contributed to the conception and study design, writing, and final approval of the version to be submitted.

Authors Yazhou Lin and Bing Yang had equal contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Yang, B., Garcia, F.C. et al. Comparison of left atrial electrophysiologic abnormalities during sinus rhythm in patients with different type of atrial fibrillation. J Interv Card Electrophysiol 39, 57–67 (2014). https://doi.org/10.1007/s10840-013-9838-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10840-013-9838-y

Keywords

Navigation