Skip to main content

Advertisement

Log in

In vitro culture and morphological characterization of prepubertal buffalo (Bubalus bubalis) putative spermatogonial stem cell

  • Stem Cell Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Spermatogonial stem cells (SSCs) have the unique ability both to self-renew and to produce progeny that undergo differentiation to spermatozoa. The present study has been carried out to develop a method to purify and enrich the pure populations of spermatogonial stem cell like cells in buffalo.

Methods

The spermatogonial cells were isolated from testes of 3–7 month old buffalo calves and disaggregated by double enzymatic digestion. Mixed population of isolated cells were then plated on Datura stramonium agglutinin (DSA) lectin coated dishes for attachment of Sertoli cells. The desired cells were obtained from suspension medium after 18 h of incubation and then loaded on discontinuous density gradient using percoll (20–65 %) and different types of spermatogonia cells were obtained at interface of each layer. These cells were cultured in vitro.

Results

Spermatogonial cells isolated have spherical outline and two or three eccentrically placed nucleoli, created a colony after proliferation during first week or immediately after passage. After 7–10 days of culture, the resulted developed colonies of spermatogonial cells expressed the spermatogonial specific genes like Plzf and VASA; and other pluripotency related markers viz. alkaline phosphtase, DBA, CD9, CD90, SSEA-1, OCT-4, NANOG and REX-1.

Conclusion

Our results show that the isolated putative spermatogonial stem cells exhibit the expression of pluripotency related and spermatogonial specific genes. This study may help to establish a long term culture system for buffalo spermatogonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anway MD, Folmer J, Wright WW, Zirk BR. Isolation of sertoli cells from adult rat testes: an approach to ex vivo studies of sertoli cells function. Biol Reprod. 2003;68:996–1002.

    Article  PubMed  CAS  Google Scholar 

  2. Aponte PM, Soda T, van de Kant HJ, de Rooij DG. Basic features of bovine spermatogonial culture and effects of glial cell line-derived neurotrophic factor. Theriogenology. 2006;65:1828–47.

    Article  PubMed  CAS  Google Scholar 

  3. Avarbock MR, Brinster CJ, Brinster RL. Reconstitution of spermatogenesis from frozen spermatogonial stem cells. Nat Med. 1996;2:693–6.

    Article  PubMed  CAS  Google Scholar 

  4. Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci USA. 1994;91:11298–302.

    Article  PubMed  CAS  Google Scholar 

  5. Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, et al. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 2004;36:647–52.

    Article  PubMed  CAS  Google Scholar 

  6. Costoya JA, Hobbs RM, Barna M, Cattoretti G, Manova K, Sukhwani M, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet. 2004;36:653–9.

    Article  PubMed  CAS  Google Scholar 

  7. Creemers LB, den Ouden K, van Pelt AMM, de Rooij DG. Maintenance of adult mouse type A spermatogonia in vitro: influence of serum and growth factors and comparison with prepubertal spermatogonial cell culture. Reproduction. 2002;124:791–9.

    Article  PubMed  CAS  Google Scholar 

  8. Ertl C, Wrobel KH. Distribution of sugar residues in the bovine testis during postnatal ontogenesis demonstrated with lectin-horseradish peroxidase conjugates. Histochemistry. 1992;97:161–71.

    Article  PubMed  CAS  Google Scholar 

  9. Griswold MD. The central role of sertoli cells in spermatogenesis. Semin Cell Dev Biol. 1998;9:411–6.

    Article  PubMed  CAS  Google Scholar 

  10. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature. 2006;440:1199–203.

    Article  PubMed  CAS  Google Scholar 

  11. Hochedlinger K, Yamada Y, Beard C, Jaenisch R. Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell. 2005;121:465–77.

    Article  PubMed  CAS  Google Scholar 

  12. Izadyar F, den Ouden K, Creemers LB, Posthuma G, Parvinen M, de Rooij DG. Proliferation and differentiation of bovine type A spermatogonia during long-term culture. Biol Reprod. 2003;68:272–81.

    Article  PubMed  CAS  Google Scholar 

  13. Izadyar F, Matthijs-Rijsenbilt JJ, den Ouden K, Creemers LB, Woelders H, de Rooij DG. Development of a cryopreservation protocol for type A spermatogonia. J Androl. 2002;23:537–45.

    PubMed  CAS  Google Scholar 

  14. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell. 2004;119:1001–12.

    Article  PubMed  CAS  Google Scholar 

  15. Kanatsu-Shinohara M, Ogonuki N, Iwano T, Lee J, Kazuki Y, Inoue K, et al. Genetic and epigenetic properties of mouse male germline stem cells during long-term culture. Development. 2005;132:4155–63.

    Article  PubMed  CAS  Google Scholar 

  16. Lengner CJ, Camargo FD, Hochedlinger K, Welstead GG, Zaidi S, Gokhale S, et al. Oct4 expression is not required for mouse somatic stem cell self-renewal. Cell Stem Cell. 2007;1:403–15.

    Article  PubMed  CAS  Google Scholar 

  17. Mori C, Nakamura N, Dix DJ, Fujioka M, Nakagawa S, Shiota K, et al. Morphological analysis of germ cell apoptosis during postnatal testis development in normal and Hsp 70-2 knockout mice. Dev Dyn. 1997;208:125–36.

    Article  PubMed  CAS  Google Scholar 

  18. Nagano M, Ryu BY, Brinster CJ, Avarbock MR, Brinster RL. Maintenance of mouse male germ line stem cells in vitro. Biol Reprod. 2003;68:2207–14.

    Article  PubMed  CAS  Google Scholar 

  19. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–91.

    Article  PubMed  CAS  Google Scholar 

  20. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24:372–6.

    Article  PubMed  CAS  Google Scholar 

  21. Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci USA. 2006;103:9524–9.

    Article  PubMed  CAS  Google Scholar 

  22. Ogawa T, Ohmura M, Yumura Y, Sawada H, Kubota Y. Expansion of murine spermatogonial stem cells through serial transplantation. Biol Reprod. 2003;68:316–22.

    Article  PubMed  CAS  Google Scholar 

  23. Oke BO, Suarez-Quian CA. Localization of secretory, membrane-associated and cytoskeletal proteins in rat testis using an improved immunocytochemical protocol that employs polyester wax. Biol Reprod. 1993;48:621–31.

    Article  PubMed  CAS  Google Scholar 

  24. Pesce M, Wang X, Wolgemuth DJ, Scholer H. Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev. 1998;71:89–98.

    Article  PubMed  CAS  Google Scholar 

  25. Raverot G, Weiss J, Park SY, Hurley L, Jameson JL. Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol. 2005;283:215–25.

    Article  PubMed  CAS  Google Scholar 

  26. Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Histological and histopathological evaluation of the testis. Clearwater: Cache River Press; 1990.

    Google Scholar 

  27. Scarpino S, Morena AR, Petersen C, Froysa B, Soder O, Boitani CA. Rapid method of sertoli cells isolation by DSA lectin, allowing mitotic analyses. Mol Cell Endocrinol. 1998;146:121–7.

    Article  PubMed  CAS  Google Scholar 

  28. Seandel M, James D, Shmelkov SV, Falciatori I, Kim J, Chavala S, et al. Generation of functional multipotent adult stem cells from GPR125 germline progenitors. Nature. 2007;449:346–50.

    Article  PubMed  CAS  Google Scholar 

  29. Shi YQ, Wang QZ, Liao SY, Zhang Y, Liu YX, Han CS. In vitro propagation of spermatogonial stem cells from KM mice. Front Biosci. 2006;11:2614–22.

    Article  PubMed  CAS  Google Scholar 

  30. Tai MH, Chang CC, Kiupel ML, Olson K, Trosko JE. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis. 2005;26:495–502.

    Article  PubMed  CAS  Google Scholar 

  31. Van Pelt AM, Morena AR, van Dissel-Emiliani FM, Boitani C, Gaemers IC, de Rooij DG, et al. Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes. Biol Reprod. 1996;55:439–44.

    Article  PubMed  Google Scholar 

  32. Yoshida S, Takakura A, Ohbo K, Abe K, Wakabayashi J, Yamamoto M, et al. Neurogenin3 delineates the earliest stages of spermatogenesis in the mouse testis. Dev Biol. 2004;269:447–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NAIP Stem Cell C-067&075, Indian Council of Agriculture Research, New Delhi.

Conflict of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Chauhan.

Additional information

Capsule

Present study showed the in vitro culture of enriched buffalo spermatogonial stem cell like cells and thereby characterized for some of the pluripotency markers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kala, S., Kaushik, R., Singh, K.P. et al. In vitro culture and morphological characterization of prepubertal buffalo (Bubalus bubalis) putative spermatogonial stem cell. J Assist Reprod Genet 29, 1335–1342 (2012). https://doi.org/10.1007/s10815-012-9883-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9883-y

Keywords

Navigation