Skip to main content

Advertisement

Log in

Discrimination of Infected Silkworm Chrysalises using Near-Infrared Spectroscopy Combined with Multivariate Analysis during the Cultivation of Cordyceps militaris

  • Published:
Journal of Applied Spectroscopy Aims and scope

The objective of this study was to confirm whether near-infrared spectroscopy could be used to discriminate the infected silkworm chrysalises. A total of 105 silkworm chrysalises — 65 infected and 40 uninfected — were collected at Beijing Shoucheng Agricultural Development Co., Ltd. Near-infrared spectra were acquired at the head, chest, abdomen, and posterior belly of each silkworm chrysalis (both uninfected and infected). Three spectral pre-processing methods and four discrimination models were used to identify the uninfected and infected silkworm chrysalises. Results indicated that the PLS–DA model based on the spectra processed by multiplicative scatter correction (MSC) had the best discrimination performance (the prediction accuracy of calibration set and prediction set were 100 and 97.5%, respectively), and the head portion was the best position for the discrimination of uninfected and infected silkworm chrysalises. The overall conclusion was that the uninfected and infected silkworm chrysalises could be successfully identified by using near-infrared spectroscopy technology in the cultivation of Cordyceps militaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. H. Sung, N. L. Hywel-Jones, J. M. Sung, J. J. Luangsaard, B. Shrestha, and J. W. Spatafora, Stud. Mycol., 57, 50–59 (2007).

    Article  Google Scholar 

  2. S. X. Bi, Y. S. Jing, and Q. Q. Zhou, Food Funct., 9, No. 1, 279–293 (2018).

    Article  Google Scholar 

  3. K. Nakamura, K. Shinozuka, and N. Yoshikawaa, J. Pharmacol. Sci., 127, No. 1, 53–56 (2015).

    Article  Google Scholar 

  4. Z. Y. Zhu, F. Liu, H. Gao, H. Sun, M. Meng, and Y. M. Zhang, Int. J. Biol. Macromol. A, 93, 1090–1099 (2016).

    Article  Google Scholar 

  5. X. W. Tian, Q. P. Song, M. He, Y. L. Lu, Y. C. Liu, and L. S. Feng, Biosci. Biotech. Res. Commun., 9, No. 4, 596–602 (2016).

    Article  Google Scholar 

  6. H. T. Fan and H. S. Lin, Chin. J. Chin. Mater. Med., 38, 2549–2552 (2013).

    Google Scholar 

  7. H. O. Kim and J. W. Yun, J. Appl. Microbiol., 99, 728–738 (2005).

    Google Scholar 

  8. Z. L. Zheng, C. H. Huang, C. Y. Mei, and R. C. Han, J. Environ. Entomol., 33, 225–233 (2011).

    Google Scholar 

  9. R. R. M. Paterson, Phytochemistry, 69, 1469–1495 (2008).

    Article  Google Scholar 

  10. Y. F. Han, Microbiol. China, 32, 1423–1428 (2009).

    Google Scholar 

  11. X. L. Chu and W. Z. Lu, Spectrosc. Spectr. Anal., 34, 2595–2605 (2014).

    Google Scholar 

  12. H. Z. Chen, L. L. Xu, G. Q. Tang, Q. Q. Song, and Q. X. Feng, Food Anal. Methods, 9, 1–10 (2015).

    Google Scholar 

  13. Y. He and X. L. Li, J. Infrared Millim. Waves, 25, 192–194 (2006).

    Google Scholar 

  14. H. E. Tahir, X. B. Zou, T. T. Shen, J. Y. Shi, and A. A. Mariod, Food Anal. Methods, 9, 2631–2641 (2016).

    Article  Google Scholar 

  15. S. M. Pan, M. Tao, A. Q. Sun, and T. M. Jin, Acta Entomol. Sin., 39, 360–365 (1996).

    Google Scholar 

  16. F. Dai, L.Wu, G. Ye, Y. Zhong, T. Hong, and X. Huang, Trans. Chin. Soc. Agric. Mach., 46, No. 12, 280–284 (2015).

    Google Scholar 

  17. J. Engel, J. Gerretzen, E. Szymańska, J. Jansen, G. Downey, L. Blanchet, and L. Buydens, TrAC Trends Anal. Chem., 50, 96–106 (2013).

    Article  Google Scholar 

  18. R. Vašát, R. Kodešová, A. Klement, and L. Borůvka, Geoderma, 298, 46–53 (2017).

    Article  ADS  Google Scholar 

  19. Y. Zhao, J. Zhang, H. Jin, J. Zhang, T. Shen, and Y. Wang, J. AOAC Int., 98, 22–26 (2015).

    Article  Google Scholar 

  20. B. T. Borille, M. C. Marcelo, R. S. Ortiz, K. C. Mariotti, M. F. Ferrão, and R. P. Limberger, Spectrochim. Acta A, 173, 318–323 (2016).

    Article  ADS  Google Scholar 

  21. E. Teye, X. Huang, H. Dai, and Q. Chen, Spectrochim. Acta A, 114, 183–189 (2013).

    Article  ADS  Google Scholar 

  22. L. L. Tao, W. Huang, X. J. Yang, Z. Y. Cao, J. M. Deng, S. S. Wang, F. Y. Mei, M. W. Zhang, and X. Zhang, Spectrosc. Spectr. Anal., 36, 2766–2773 (2016).

    Google Scholar 

  23. T. Koumbi-Mounanga, K. Groves, B. Leblon, G. Zhou, and P. A. Cooper, Eur. J. Wood Prod., 73, 43–50 (2015).

    Article  Google Scholar 

  24. F. Mabood, F. Jabeen, M. Ahmed, J. Hussain, S. A. A. Al Mashaykhi, Z. M. A. Al Rubaiey, S. Farooq, R. Boqué, L. Ali, Z. Hussain, A. Al-Harrasi, A. L. Khan, Z. Naureen, M. Idrees, and S. Manzoor, Food Chem., 221, 746–750 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Luo.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 88, No. 1, p. 169, January–February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, X., Wang, C. et al. Discrimination of Infected Silkworm Chrysalises using Near-Infrared Spectroscopy Combined with Multivariate Analysis during the Cultivation of Cordyceps militaris. J Appl Spectrosc 88, 187–193 (2021). https://doi.org/10.1007/s10812-021-01157-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-021-01157-9

Keywords

Navigation