Skip to main content
Log in

Hybrid photochromic multilayer films based on chitosan and europium phosphomolybdate

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Multilayer films based on chitosan and K11[EuIII(PMo11O39)2] were prepared on different substrates using the layer-by-layer method. UV–Vis spectra of the films showed regular stepwise growth. X-ray photoelectron spectroscopy data confirmed the presence of chitosan and phosphomolybdate within the films and scanning electron microscopy images revealed a completely covered surface with a roughened texture. The film electrochemical responses and permeability were studied by cyclic voltammetry. Films revealed four surface-confined Mo-based reduction processes (MoVI → MoV). Studies with [Fe(CN)6]3−/4− and [Ru(NH3)6]3+/2+ showed that film permeability depended on the film thickness and on the charge of the outer layer. Irradiation of films with UV light confirmed their photochromic properties through the colour change from transparent to blue. Colouration–discolouration cycles could be repeated up to 36 cycles without the loss of optical contrast, indicating high film photochromic stability. These results provided valuable insights for exploring the potential application of polyoxometalate-based films for the construction of photochromic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsivgoulis GM, Lehn JM (1995) Photonic molecular devices—reversibly photoswitchable fluorophores for nondesctructive readout for optical memory. Angew Chem Int Ed Engl 34(10):1119–1122

    Article  CAS  Google Scholar 

  2. Yamase T (1998) Photo- and electrochromism of polyoxometalates and related materials. Chem Rev 98(1):307–325. doi:10.1021/cr9604043

    Article  CAS  Google Scholar 

  3. He T, Yao JN (2006) Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates. Prog Mater Sci 51(6):810–879. doi:10.1016/j.pmatsci.2005.12.001

    Article  CAS  Google Scholar 

  4. Tian H, Yang SJ (2004) Recent progresses on diarylethene based photochromic switches. Chem Soc Rev 33(2):85–97. doi:10.1039/b302356g

    Article  CAS  Google Scholar 

  5. Raymo FM, Tomasulo M (2005) Electron and energy transfer modulation with photochromic switches. Chem Soc Rev 34(4):327–336. doi:10.1039/b400387j

    Article  CAS  Google Scholar 

  6. He T, Yao JN (2004) Photochromism in transition-metal oxides. Res Chem Intermed 30(4–5):459–488. doi:10.1163/1568567041280890

    Article  CAS  Google Scholar 

  7. Pardo R, Zayat M, Levy D (2011) Photochromic organic–inorganic hybrid materials. Chem Soc Rev 40(2):672–687. doi:10.1039/c0cs00065e

    Article  CAS  Google Scholar 

  8. Wang MS, Xu G, Zhang ZJ, Guo GC (2010) Inorganic–organic hybrid photochromic materials. Chem Commun 46(3):361–376. doi:10.1039/b917890b

    Article  CAS  Google Scholar 

  9. Liu SQ, Mohwald H, Volkmer D, Kurth DG (2006) Polyoxometalate-based electro- and photochromic dual-mode devices. Langmuir 22(5):1949–1951. doi:10.1021/la0523863

    Article  CAS  Google Scholar 

  10. Liu SQ, Kurth DG, Bredenkotter B, Volkmer D (2002) The structure of self-assembled multilayers with polyoxometalate nanoclusters. J Am Chem Soc 124(41):12279–12287. doi:10.1021/ja026946l

    Article  CAS  Google Scholar 

  11. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232–1237. doi:10.1126/science.277.5330.1232

    Article  CAS  Google Scholar 

  12. Guo WH, Xu L, Li FY, Xu BB, Yang YB, Liu SP, Sun ZX (2010) Chitosan-assisted fabrication and electrocatalytic activity of the composite film electrode of heteropolytungstate/carbon nanotubes. Electrochim Acta 55(5):1523–1527. doi:10.1016/j.electacta.2009.10.003

    Article  CAS  Google Scholar 

  13. Elsabee MZ, Naguib HF, Morsi RE (2012) Chitosan based nanofibers, review. Mater Sci Eng C 32(7):1711–1726. doi:10.1016/j.msec.2012.05.009

    Article  CAS  Google Scholar 

  14. Ekrami-Kakhki M-S, Khorasani-Motlagh M, Noroozifar M (2011) Platinum nanoparticles self-assembled onto chitosan membrane as anode for direct methanol fuel cell. J Appl Electrochem 41(5):527–534

    Article  CAS  Google Scholar 

  15. Prashanth KVH, Tharanathan RN (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18(3):117–131. doi:10.1016/j.tifs.2006.10.022

    Article  CAS  Google Scholar 

  16. Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Technol 10(2):37–51. doi:10.1016/s0924-2244(99)00017-5

    Article  CAS  Google Scholar 

  17. Alpat Ş, Alpat SK, Dursun Z, Telefoncu A (2009) Development of a new biosensor for mediatorless voltammetric determination of hydrogen peroxide and its application in milk samples. J Appl Electrochem 39(7):971–977

    Article  CAS  Google Scholar 

  18. Liu SP, Xu L, Li FY, Guo WH, Xing Y, Sun ZX (2011) Carbon nanotubes-assisted polyoxometalate nanocomposite film with enhanced electrochromic performance. Electrochim Acta 56(24):8156–8162. doi:10.1016/j.electacta.2011.05.131

    Article  CAS  Google Scholar 

  19. Fan DW, Hao JC (2009) Fabrication and electrocatalytic properties of chitosan and keplerate-type polyoxometalate Mo72Fe30 hybrid films. J Phys Chem B 113(21):7513–7516. doi:10.1021/jp901413w

    Article  CAS  Google Scholar 

  20. Feng YH, Han ZG, Peng J, Lu J, Xue B, Li L, Ma HY, Wang EB (2006) Fabrication and characterization of multilayer films based on Keggin-type polyoxometalate and chitosan. Mater Lett 60(13–14):1588–1593. doi:10.1016/j.matlet.2005.11.069

    Article  CAS  Google Scholar 

  21. Gaunt AJ, May I, Sarsfield MJ, Collison D, Helliwell M, Denniss IS (2003) A rare structural characterisation of the phosphomolybdate lacunary anion, [PMo11O39]7−. Crystal structures of the Ln(III) complexes, (NH4)11 [Ln(PMo11O39)2]·16H2O (Ln = Ce-III, Sm-III, Dy-III or Lu-III). Dalton Trans 13:2767–2771. doi:10.1039/b301995k

    Article  CAS  Google Scholar 

  22. Copping R, Gaunt AJ, May I, Sarsfield MJ, Collison D, Helliwell M, Denniss IS, Apperley DC (2005) Trivalent lanthanide lacunary phosphomolybdate complexes: a structural and spectroscopic study across the series [Ln(PMo11O39)2]11−. Dalton Trans 7:1256–1262. doi:10.1039/b500408j

    Article  CAS  Google Scholar 

  23. Fernandes DM, Cunha-Silva L, Ferreira RAS, Balula SS, Carlos LD, de Castro B, Freire C (2013) Redox behaviour, electrochromic properties and photoluminescence of potassium lanthano phosphomolybdate sandwich-type compounds. RSC Adv 3(37):16697–16707. doi:10.1039/c3ra41697f

    Article  CAS  Google Scholar 

  24. Camilo CS, dos Santos DS, Rodrigues JJ, Vega ML, Campana SP, Oliveira ON, Mendonca CR (2003) Surface-relief gratings and photoinduced Birefringence in layer-by-layer films of chitosan and an azopolymer. Biomacromolecules 4(6):1583–1588. doi:10.1021/bm034220r

    Article  CAS  Google Scholar 

  25. Koenig JF, Martel D (2008) Applying UV–Vis spectroscopy to step-by-step molecular self assembly on surface: does it bring pertinent information? Thin Solid Films 516(12):3865–3872. doi:10.1016/j.tsf.2007.07.137

    Article  CAS  Google Scholar 

  26. Cheng L, Cox JA (2002) Nanocomposite multilayer film of a ruthenium metallodendrimer and a Dawson-type polyoxometalate as a bifunctional electrocatalyst. Chem Mater 14(1):6–8. doi:10.1021/cm010854y

    Article  CAS  Google Scholar 

  27. Finsgar M, Fassbender S, Hirth S, Milosev I (2009) Electrochemical and XPS study of polyethyleneimines of different molecular sizes as corrosion inhibitors for AISI 430 stainless steel in near-neutral chloride media. Mater Chem Phys 116(1):198–206. doi:10.1016/j.matchemphys.2009.03.010

    Article  CAS  Google Scholar 

  28. Perez-Romo P, Potvin C, Manoli JM, Chehimi MM, Djega-Mariadassou G (2002) Phosphorus-doped molybdenum oxynitrides and oxygen-modified molybdenum carbides: synthesis, characterization, and determination of turnover rates for propene hydrogenation. J Catal 208(1):187–196. doi:10.1006/jcat 2002.3564

    Article  CAS  Google Scholar 

  29. Feng W, Ding YS, Liu Y, Lu R (2006) The photochromic process of polyoxometalate-based nanocomposite thin film by in situ AFM and spectroscopy. Mater Chem Phys 98(2–3):347–352. doi:10.1016/j.matchemphys.2005.09.037

    Article  CAS  Google Scholar 

  30. Fernandes DM, Juliao D, Pereira C, Ananias D, Balula SS, Freire C (2012) Hybrid layer-by-layer films based on lanthanide-bridged silicotungstates and poly(ethylenimine). Colloids Surf A 415:302–309. doi:10.1016/j.colsurfa.2012.09.053

    Article  CAS  Google Scholar 

  31. Le FH, Wang LX, Jia W, Jia DZ, Bao SJ (2012) Synthesis and photoluminescence of Eu2+ by co-doping Eu3+ and Cl in Sr2P2O7 under air atmosphere. J Alloys Compd 512(1):323–327. doi:10.1016/j.jallcom.2011.09.088

    Article  CAS  Google Scholar 

  32. Durr H, Bouas-Laurent H (1990) Photochromism: molecules and systems. Elsevier, New York

    Google Scholar 

  33. Fernandes DM, Cunha-Silva L, Ferreira RAS, Balula SS, Carlos LD, Castro B, Freire C (2013) Redox behaviour, electrochromic properties and photoluminescence of potassium lanthano phosphomolybdate sandwich-type compounds. RSC Adv. doi:10.1039/C3RA41697F

    Google Scholar 

  34. Fernandes DM, Brett CMA, Cavaleiro AMV (2011) Layer-by-layer self-assembly and electrocatalytic properties of poly(ethylenimine)-silicotungstate multilayer composite films. J Solid State Electrochem 15(4):811–819. doi:10.1007/s10008-010-1154-1

    Article  CAS  Google Scholar 

  35. Harris JJ, Bruening ML (2000) Electrochemical and in situ ellipsometric investigation of the permeability and stability of layered polyelectrolyte films. Langmuir 16(4):2006–2013. doi:10.1021/la990620h

    Article  CAS  Google Scholar 

  36. Pardo-Yissar V, Katz E, Lioubashevski O, Willner I (2001) Layered polyelectrolyte films on Au electrodes: characterization of electron-transfer features at the charged polymer interface and application for selective redox reactions. Langmuir 17(4):1110–1118. doi:10.1021/la000729l

    Article  CAS  Google Scholar 

  37. Farhat TR, Schlenoff JB (2001) Ion transport and equilibria in polyelectrolyte multilayers. Langmuir 17(4):1184–1192. doi:10.1021/la001298

    Article  CAS  Google Scholar 

  38. Fernandes DM, Carapuca HM, Brett CMA, Cavaleiro AMV (2010) Electrochemical behaviour of self-assembly multilayer films based on iron-substituted alpha-Keggin polyoxotungstates. Thin Solid Films 518(21):5881–5888. doi:10.1016/j.tsf.2010.05.065

    Article  CAS  Google Scholar 

  39. Chu Y, Kim J, Choi S, Rhee CK (2011) Electron transfer behavior at polyoxometalate-adsorbed alkanethiol self-assembled monolayers. Appl Surf Sci 257(22):9490–9497. doi:10.1016/j.apsusc.2011.06.042

    Article  CAS  Google Scholar 

  40. Gao SY, Li TH, Li X, Cao R (2006) Electrochemical behavior and multilayer films of the sandwich-type polyoxotungstate complex {K10Co4(H2O)2(PW9O34)2}. Mater Lett 60(29–30):3622–3626. doi:10.1016/j.matlet.2006.03.104

    Article  CAS  Google Scholar 

  41. Barreira SVP, Garcia-Morales V, Pereira CM, Manzanares JA, Silva F (2004) Electrochemical impedance spectroscopy of polyelectrolyte multilayer modified electrodes. J Phys Chem B 108(46):17973–17982. doi:10.1021/jp0466845

    Article  CAS  Google Scholar 

  42. Yang GC, Gong H, Yang R, Guo HW, Wang YZ, Liu BF, Dong S (2006) Modification of electrode surface through electrospinning followed by self-assembly multilayer film of polyoxometalate and its photochromic. Electrochem Commun 8(5):790–796. doi:10.1016/j.elecom.2006.03.019

    Article  CAS  Google Scholar 

  43. Qi W, Li HL, Wu LX (2008) Stable photochromism and controllable reduction properties of surfactant-encapsulated polyoxometalate/silica hybrid films. J Phys Chem B 112(28):8257–8263. doi:10.1021/jp801188e

    Article  CAS  Google Scholar 

  44. Chen ZH, Loo BH, Ma Y, Cao YW, Ibrahim A, Yao JN (2004) Photochromism of novel molybdate/alkylamine composite thin films. ChemPhysChem 5(7):1020–1026. doi:10.1002/cphc.200400041

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Fundação para a Ciência e a Tecnologia (FCT) and COMPETE for financial support through grant no. PEst-C/EQB/LA0006/2011, PTDC/CTM-POL/0813/2012, NORTE-07-0124-FEDER-000067–Nanochemistry and to COST Action CM-1203 PoCheMoN. DMF also thanks FCT for her PD grant SFRH/BPD/74872/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Freire.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 350 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, D.M., Freire, C. Hybrid photochromic multilayer films based on chitosan and europium phosphomolybdate. J Appl Electrochem 44, 655–665 (2014). https://doi.org/10.1007/s10800-014-0673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0673-3

Keywords

Navigation