Skip to main content
Log in

Calculation of temperature transients in pulse electrochemical machining (PECM)

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Pulse Electrochemical Machining (PECM) is a manufacturing process which provides an economical and effective method for machining hard materials into complex shapes. One important drawback of ECM is the lack of quantitative simulation software to predict the tool shape and machining parameters necessary to produce a given work-piece profile. Calculating temperature distributions in the system allows more accurate simulations, as well as the determination of the thermal limits of the system. In this paper temperature transients over multiple pulses are calculated. It is found that the way the system is modeled has a great impact on the temperature evolution in the thermal boundary layer. The presence of massive electrodes introduces extra time scales which may not be negligible. It is advantageous to identify the thermal time scales in the system, to see whether the heat produced during separate pulses will accumulate or not during the process. The occurring thermal time scales in the system are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

Abbreviations

a :

Polarization parameter 1/S m−2

A :

Electrode surface/m2

b :

Polarization parameter 2/A m−2

Bi :

Biot number/−

C p :

Heat capacity/J kg−1 K−1

D 0,i :

Diffusion coefficients at infinite dilution/m2 s−1

E 0 :

Equilibrium potential/V

Fo :

Fourier number/−

h :

Heat transfer coefficient/W m−2 K−1

H :

Characteristic size electrode/m

I :

Electrical current/A

J :

Current density distribution/A m−2

k :

Thermal conductivity/W m−1 K−1

k mol :

Molecular thermal conductivity/W m−1 K−1

k turb :

Turbulent thermal conductivity/W m−1 K−1

L :

Electrode length/m

P doublelayer :

Heat produced in the double layer/W m−2

P bulk :

Heat produced in the bulk/W m−3

Pr t :

Turbulent Prandtl number/−

q :

Heat/W

St 0 :

Strouhal number/−

St 0 :

Strouhal number for flushing period/−

t :

Time/s

t 0 :

Pulse off-time/s

T :

Pulse period/s

Δt c :

Transient duration due to convection/s

U :

Potential distribution/V

ν:

Scalar velocity/m s−1

\({\bar{\nu}}\) :

Velocity vector/m s−1

V :

Volume/m2

x :

Distance/m

α :

Duty cycle/−

α′ :

Thermal diffusivity/m2 s−1

η :

Overpotential/V

θ :

Relative temperature/K

θ′ :

Normalized temperature/K

Θ:

Temperature/K

Θi :

Initial temperature/K

Θ :

Reference temperature/K

\({\hat{\lambda}_n}\) :

Transcendental coefficients/−

μ :

Dynamic viscosity/kg m−1 s−1

ρ :

Density/kg m−3

σ :

Electrical conductivity/S m−1

τ :

Time constant/s

References

  1. D. Risco, A. Davydov (1993). J. Am. Soc. Mech. Eng. 64:701

    Google Scholar 

  2. J. McGeough (1974). Principles of Electrochemical Machining. J. Wiley & Sons, New York

    Google Scholar 

  3. K.P. Rajurkar, D. Zhu, J.A. McGeough, J. Kozak, A. De Silva (1999). Ann. CIRP 48(2):567

    Article  Google Scholar 

  4. M. Lohrengel, I. Kluppel, C. Rosenkranz, H. Betterman, J. Schultze (2003). Electrochim. Acta. 48(20–22):3203

    Article  CAS  Google Scholar 

  5. A. Mount, D. Clifton, P. Howarth, A. Sherlock (2003). J. Mater. Process.Technol. 138:449

    Article  CAS  Google Scholar 

  6. M. Datta, D. Landolt (1981). Electrochim. Acta 7:899

    Article  Google Scholar 

  7. J. Kozak (2004). Bull. Polish Acad. Sci. Tech. Sci. 52:313

    CAS  Google Scholar 

  8. J. Kozak, K. Rajurkar (1991). J. Mater. Process. Technol. 28(1–2): 149

    Article  Google Scholar 

  9. W. Clark, J. McGeough (1977). J. Appl. Electrochem. 7:277

    Article  CAS  Google Scholar 

  10. J. Kozak, K. Rajurkar, K. Lubkowski (1997). Trans. NAMRI/SME. XXV:159

    Google Scholar 

  11. S. Loutrel, N. Cook (1973). ASME J. Eng. Indust. 95(B/4):1003

    CAS  Google Scholar 

  12. S. Van Damme, G. Nelissen, B. Van Den Bossche, J. Deconinck (2006). J. Appl. Electrochem. 36(1):1

    Article  CAS  Google Scholar 

  13. G. Nelissen, B. Van Den Bossche, J. Deconinck, A. Van Theemsche, C. Dan (2003). J. Appl. Electrochem. 33(10):863

    Article  CAS  Google Scholar 

  14. G. Nelissen, A. Van Theemsche, C. Dan, B. Van Den Bossche, J. Deconinck (2004). J. Electroanal. Chem. 563(2):213

    Article  CAS  Google Scholar 

  15. N. Waterson (2003) Simulation of Turbulent Flow Heat and Mass Transfer Using a Residual-distribution Approach, Dissertation (Technical University, Delft)

    Google Scholar 

  16. C. Dan, B. Van Den Bossche, L. Bortels, G. Nelissen, J. Deconinck (2001). J. Electroanal. Chem. 505:12

    Article  CAS  Google Scholar 

  17. M. Purcar (2005) Development and Evaluation of Numerical Models and Methods for Electrochemical Machining and Electroforming Applications, Dissertation. Vrije Universiteit Brussel, Brussels

    Google Scholar 

  18. H.S.J. Altena, Precision ECM by Process Characteristic Modelling, Dissertation (Glasgow Caledonian University, 2000).

  19. G. Nelissen (2003) Simulation of Multi-ion Transport in Turbulent Flow Dissertation. Vrije Universiteit Brussel, Brussels

    Google Scholar 

  20. W.A. Strauss (1992) Partial Differential Equations: An Introduction . J. Wiley & Sons, New York

    Google Scholar 

  21. J.H. Lienhard IV and J.H. Lienhard V, A heat transfer textbook, 3rd edn. (Phlogiston Press, Cambridge, Massachusetts, 2005), 762 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Smets.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smets, N., Van Damme, S., De Wilde, D. et al. Calculation of temperature transients in pulse electrochemical machining (PECM). J Appl Electrochem 37, 315–324 (2007). https://doi.org/10.1007/s10800-006-9259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9259-z

Keywords

Navigation