Skip to main content

Advertisement

Log in

Quantitative analysis of macular and peripapillary microvasculature in adults with anisometropic amblyopia

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Introduction

The aim of this study was to compare the macular and peripapillary capillary vessel density (CVD) and foveal avascular zone (FAZ) in amblyopic eyes of adults with their fellow eyes and with eyes of healthy controls using optical coherence tomography-angiography (OCT-A).

Methods

A total of 34 eyes of 17 patients with anisometropic amblyopia and 80 eyes of 40 age- and gender-matched healthy controls were included. CVD in superficial (SCP) and deep retinal capillary plexuses (DCP), peripapillary region, and FAZ were analyzed by OCT-A.

Results

The median ages were 31 years (range 20–64) in patients with amblyopia and 34.5 years (range 24–65) in healthy controls (p = 0.242). The mean FAZ area measured was 0.329 ± 0.024 mm2 in amblyopic eyes, 0.332 ± 0.025 mm2 in fellow eyes, and 0.269 ± 0.015 mm2 in control eyes (p < 0.05). The amblyopic eye of participants showed a decrease in CVD of SCP and DCP (p < 0.001, for all). The inside optic disk CVD measurements were lower in the amblyopic eyes than in the fellow eyes (p = 0.001) and healthy subjects (p = 0.015).

Conclusion

Significant differences in macular and peripapillary microvasculature were found in anisometropic amblyopic patients. The clinical significance of the results requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Siu C, Murphy K (2018) The development of human visual cortex and clinical implications. Eye Brain 10:25–36. https://doi.org/10.2147/EB.S130893

    Article  PubMed  PubMed Central  Google Scholar 

  2. Birch EE (2013) Amblyopia and binocular vision. Prog Retin Eye Res 33:67–84. https://doi.org/10.1016/j.preteyeres.2012.11.001

    Article  PubMed  Google Scholar 

  3. Ding K, Liu Y, Yan X et al (2013) Altered functional connectivity of the primary visual cortex in subjects with amblyopia. Neural Plast 2013:1–8. https://doi.org/10.1155/2013/612086

    Article  Google Scholar 

  4. Lekskul A, Wuthisiri W, Padungkiatsagul T (2018) Evaluation of retinal structure in unilateral amblyopia using spectral domain optical coherence tomography. J Am Assoc Pediatr Ophthalmol Strabismus 22:386–389. https://doi.org/10.1016/j.jaapos.2018.05.014

    Article  Google Scholar 

  5. Kusbeci T, Karti O, Karahan E, Oguztoreli M (2017) The evaluation of anatomic and functional changes in unilateral moderate amblyopic eyes using optical coherence tomography and pupil cycle time. Curr Eye Res 42:1725–1732. https://doi.org/10.1080/02713683.2017.1349153

    Article  PubMed  Google Scholar 

  6. Niyaz L, Yücel OE, Arıtürk N, Terzi O (2017) Choroidal thickness in strabismus and amblyopia cases. Strabismus 25:56–59. https://doi.org/10.1080/09273972.2017.1318152

    Article  PubMed  Google Scholar 

  7. Spaide RF, Fujimoto JG, Waheed NK et al (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55. https://doi.org/10.1016/j.preteyeres.2017.11.003

    Article  PubMed  Google Scholar 

  8. Demirayak B, Vural A, Sonbahar O et al (2019) Analysis of macular vessel density and foveal avascular zone in adults with amblyopia. Curr Eye Res. https://doi.org/10.1080/02713683.2019.1639766

    Article  PubMed  Google Scholar 

  9. Wallace DK, Repka MX, Lee KA et al (2018) Amblyopia preferred practice pattern®. Ophthalmology 125:P105–P142. https://doi.org/10.1016/j.ophtha.2017.10.008

    Article  PubMed  Google Scholar 

  10. Ishibazawa A, Nagaoka T, Takahashi A et al (2015) Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 160:35–44.e1. https://doi.org/10.1016/j.ajo.2015.04.021

    Article  PubMed  Google Scholar 

  11. Kang J-W, Yoo R, Jo YH, Kim HC (2017) Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion. Retina 37:1700–1709. https://doi.org/10.1097/IAE.0000000000001403

    Article  PubMed  Google Scholar 

  12. Jia Y, Bailey ST, Wilson DJ et al (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121:1435–1444. https://doi.org/10.1016/j.ophtha.2014.01.034

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tălu S, Vlăduţiu C, Lupaşcu CA (2015) Characterization of human retinal vessel arborisation in normal and amblyopic eyes using multifractal analysis. Int J Ophthalmol 8:996–1002. https://doi.org/10.3980/j.issn.2222-3959.2015.05.26

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lonngi M, Velez FG, Tsui I et al (2017) Spectral-domain optical coherence tomographic angiography in children with amblyopia. JAMA Ophthalmol 135:1086. https://doi.org/10.1001/jamaophthalmol.2017.3423

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yilmaz I, Ocak OB, Yilmaz BS et al (2017) Comparison of quantitative measurement of foveal avascular zone and macular vessel density in eyes of children with amblyopia and healthy controls: an optical coherence tomography angiography study. J Am Assoc Pediatr Ophthalmol Strabismus 21:224–228. https://doi.org/10.1016/j.jaapos.2017.05.002

    Article  Google Scholar 

  16. Chen W, Lou J, Thorn F et al (2019) Retinal microvasculature in amblyopic children and the quantitative relationship between retinal perfusion and thickness. Investig Opthalmol Vis Sci 60:1185. https://doi.org/10.1167/iovs.18-26416

    Article  Google Scholar 

  17. Doğuizi S, Yılmazoğlu M, Kızıltoprak H et al (2019) Quantitative analysis of retinal microcirculation in children with hyperopic anisometropic amblyopia: an optical coherence tomography angiography study. J Am Assoc Pediatr Ophthalmol Strabismus 23:201.e1–201.e5. https://doi.org/10.1016/j.jaapos.2019.01.017

    Article  Google Scholar 

  18. Karabulut M, Karabulut S, Sül S, Karalezli A (2019) Microvascular changes in amblyopic eyes detected by optical coherence tomography angiography. J Am Assoc Pediatr Ophthalmol Strabismus 23:155.e1–155.e4. https://doi.org/10.1016/j.jaapos.2018.12.009

    Article  Google Scholar 

  19. Levi DM, Li RW (2009) Improving the performance of the amblyopic visual system. Philos Trans R Soc B Biol Sci 364:399–407. https://doi.org/10.1098/rstb.2008.0203

    Article  Google Scholar 

  20. Meier K, Giaschi D (2017) Unilateral amblyopia affects two eyes: fellow eye deficits in amblyopia. Investig Opthalmol Vis Sci 58:1779. https://doi.org/10.1167/iovs.16-20964

    Article  Google Scholar 

  21. Kaur S, Singh SR, Katoch D et al (2019) Optical coherence tomography angiography in amblyopia. Ophthalmic Surg Lasers Imaging Retina 50:e294–e299. https://doi.org/10.3928/23258160-20191031-17

    Article  PubMed  Google Scholar 

  22. Fang D, Tang FY, Huang H et al (2019) Repeatability, interocular correlation and agreement of quantitative swept-source optical coherence tomography angiography macular metrics in healthy subjects. Br J Ophthalmol 103:415–420. https://doi.org/10.1136/bjophthalmol-2018-311874

    Article  PubMed  Google Scholar 

  23. Lewis TL, Maurer D (2005) Multiple sensitive periods in human visual development: evidence from visually deprived children. Dev Psychobiol 46:163–183. https://doi.org/10.1002/dev.20055

    Article  PubMed  Google Scholar 

  24. Shuai L, Leilei Z, Wen W et al (2019) Binocular treatment in adult amblyopia is based on parvocellular or magnocellular pathway. Eur J Ophthalmol. https://doi.org/10.1177/1120672119841216

    Article  PubMed  Google Scholar 

  25. Storey PP, Aziz HA, O’Keefe GAD et al (2018) Decreased severity of age-related macular degeneration in amblyopic eyes. Br J Ophthalmol 102:1575–1578. https://doi.org/10.1136/bjophthalmol-2017-311671

    Article  PubMed  Google Scholar 

  26. Sobral I, Rodrigues TM, Soares M et al (2018) OCT angiography findings in children with amblyopia. J Am Assoc Pediatr Ophthalmol Strabismus 22:286–289.e2. https://doi.org/10.1016/j.jaapos.2018.03.009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamze Dereli Can.

Ethics declarations

Conflict of interest

Author declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dereli Can, G. Quantitative analysis of macular and peripapillary microvasculature in adults with anisometropic amblyopia. Int Ophthalmol 40, 1765–1772 (2020). https://doi.org/10.1007/s10792-020-01345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01345-0

Keywords

Navigation