Skip to main content
Log in

A New Nano Design for Implementation of a Digital Comparator Based on Quantum-Dot Cellular Automata

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum-dot is the result of elastic relaxation which has a straight relationship with the optical and electronic aspects of the quantum-dot-based devices. In nanotechnologies, Quantum-dot Cellular Automata (QCA) is a perfect transistor-less computation method where it tries to create general computation at the nanoscale with better switching frequency and enhanced scale integration to overcome the scaling shortfalls of CMOS technology. In this technology, binary information is represented based on the distribution of electron configuration in chemical molecules. Also, the comparator is the essential component in digital circuits, which takes two binary numbers as input and implements their resemblance. In this paper, a 1-bit comparator architecture in an optimized and efficient manner is suggested to bring a new phase of comparator circuit based on QCA, and then a novel 2-bit comparator structure is offered. The simulation and functionality of proposed comparators have been examined by the QCAdesigner tool, and comparison with formerly designs shows a high degree of compactness and consistent performance of proposed designs. Proposed 1-bit and 2-bit QCA comparators exhibit a delay of 0.75 and 2.75 clock cycle, occupy an active area of 0.04 and 0.19 μm2, and use 31 and 125 QCA cells, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pavlović, I. R., Pavlović, R., Janevski, G., Despenić, N. and Pajković, V.: "Dynamic Behavior of Two Elastically Connected NANOBEAMS under a White Noise Process," Facta Universitatis, Series: Mechanical Engineering (2020)

  2. Singh, G., Lamichhane, Y., Bhui, A.S., Sidhu, S.S., Bains, P.S., Mukhiya, P.: Surface morphology and MICROHARDNESS behavior of 316L in hap-PMEDM. Facta Universitatis, Series: Mechanical Engineering. 17(3), 445–454 (2019)

    Article  Google Scholar 

  3. Sherizadeh, R., Navimipour, N.J.: Designing a 2-to-4 decoder on nanoscale based on quantum-dot cellular automata for energy dissipation improving. Optik. 158, 477–489 (2018)

    Article  ADS  Google Scholar 

  4. Fam, S.R., Navimipour, N.J.: Design of a loop-based random access memory based on the nanoscale quantum dot cellular automata. Photon Netw. Commun. 37(1), 120–130 (2019)

    Article  Google Scholar 

  5. Roohi, A., Khademolhosseini, H.: Quantum-dot cellular automata: computing in nanoscale. Reviews in Theoretical Science. 2(1), 46–76 (2014)

    Article  Google Scholar 

  6. Mosleh, M.: A novel full adder/subtractor in quantum-dot cellular automata. Int. J. Theor. Phys. 58(1), 221–246 (2019)

    Article  MathSciNet  Google Scholar 

  7. Moharrami, E., Navimipour, N.J.: Designing nanoscale counter using reversible gate based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(4), 1060–1081 (2018)

    Article  MathSciNet  Google Scholar 

  8. Ahmad, F., John, M.U., Khosroshahy, M.B., Sarmadi, S., Bhat, G.M., Peer, Z.A., Wani, S.J.: Performance evaluation of an ultra-high speed adder based on quantum-dot cellular automata. Int. J. Inf. Technol. 11(3), 467–478 (2019)

    Google Scholar 

  9. Rezaei, A.: New efficient designs of reversible logic gates and circuits in the QCA technology. Engineering Review: Međunarodni časopis namijenjen publiciranju originalnih istraživanja s aspekta analize konstrukcija, materijala i novih tehnologija u području strojarstva, brodogradnje, temeljnih tehničkih znanosti, elektrotehnike, računarstva i građevinarstva. 39(1), 47–59 (2019)

    Article  Google Scholar 

  10. Mukherjee, C., et al.: "Implementation of Toffoli Gate Using LTEx Module of Quantum-Dot Cellular Automata," in Contemporary Advances in Innovative and Applicable Information Technology: Springer, pp. 57–65 (2019)

  11. Mohaghegh, S.M., Sabbaghi-Nadooshan, R., Mohammadi, M.: Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model. Comput. Electr. Eng. 71, 43–59 (2018)

    Article  Google Scholar 

  12. Torres, F. S., Wille, R., Niemann, P., and Drechsler, R.: "An energy-aware model for the logic synthesis of quantum-dot cellular automata," IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. (2018)

  13. Chaves, J.F., Ribeiro, M.A., Silva, L.M., de Assis, L.M., Torres, M.S., Neto, O.P.V.: Energy efficient QCA circuits design: simulating and analyzing partially reversible pipelines. J. Comput. Electron. 17(1), 479–489 (2018)

    Article  Google Scholar 

  14. Arani, I.E., Rezai, A.: Novel circuit design of serial–parallel multiplier in quantum-dot cellular automata technology. J. Comput. Electron. 17(4), 1771–1779 (2018)

    Article  Google Scholar 

  15. Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24(2), 1295–1305 (2018)

    Article  Google Scholar 

  16. Gadim, M.R., Navimipour, N.J.: Quantum-dot cellular automata in designing the arithmetic and logic unit: systematic literature review, classification and current trends. Journal of Circuits, Systems and Computers. 27(10), 1830005 (2018)

    Article  Google Scholar 

  17. Divshali, M.N., Rezai, A., Hamidpour, S.S.F.: Design of Novel Coplanar Counter Circuit in quantum dot cellular automata technology. Int. J. Theor. Phys. 1–15 (2019)

  18. Sangsefidi, M., Abedi, D., Yoosefi, E., Karimpour, M.: High speed and low cost synchronous counter design in quantum-dot cellular automata. Microelectron. J. 73, 1–11 (2018)

    Article  Google Scholar 

  19. Mukhopadhyay, D., Dutta, P.: Quantum cellular automata based novel unit 2: 1 multiplexer. Int. J. Comput. Appl. 43(2), 22–25 (2012)

    Google Scholar 

  20. Cocorullo, G., Corsonello, P., Frustaci, F., Perri, S.: Design of efficient QCA multiplexers. Int. J. Circuit Theory Appl. 44(3), 602–615 (2016)

    Article  Google Scholar 

  21. Lu, L., Liu, W., O'Neill, M., Swartzlander, E.E.: QCA systolic array design. IEEE Trans. Comput. 62(3), 548–560 (2011)

    Article  MathSciNet  Google Scholar 

  22. Abedi, D. and Jaberipur, G.: "Coplanar QCA serial adder and multiplier via clock-zone based crossover," in 2015 18th CSI International Symposium on Computer Architecture and Digital Systems (CADS): IEEE, pp. 1–4 (2015)

  23. Divshali, M.N., Rezai, A., Karimi, A.: Towards multilayer QCA SISO shift register based on efficient D-FF circuits. Int. J. Theor. Phys. 57(11), 3326–3339 (2018)

    Article  MathSciNet  Google Scholar 

  24. Padmanabhan, A., Miranda, A. V., and Srinivas, T.: "An efficient design of 4-bit serial input parallel output/serial output shift register in quantum-dot cellular automata," in 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom): IEEE, pp. 2736–2738 (2016)

  25. Roshan, M.G., Gholami, M.: 4-bit serial shift register with reset ability and 4-bit LFSR in QCA technology using minimum number of cells and delay. Comput. Electr. Eng. 78, 449–462 (2019)

    Article  Google Scholar 

  26. Afrooz, S., Navimipour, N.J.: Fault-tolerant Design of a Shift Register at the nanoscale based on quantum-dot cellular automata. Int. J. Theor. Phys. 57(9), 2598–2614 (2018)

    Article  Google Scholar 

  27. Roshany, H.R., Rezai, A.: Novel efficient circuit design for multilayer QCA RCA. Int. J. Theor. Phys. 58(6), 1745–1757 (2019)

    Article  MathSciNet  Google Scholar 

  28. Balali, M., Rezai, A., Balali, H., Rabiei, F., Emadi, S.: Towards coplanar quantum-dot cellular automata adders based on efficient three-input XOR gate. Results in physics. 7, 1389–1395 (2017)

    Article  ADS  Google Scholar 

  29. Roohi, A., DeMara, R.F., Khoshavi, N.: Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46(6), 531–542 (2015)

    Article  Google Scholar 

  30. Blair, E.: Electric-field inputs for molecular quantum-dot cellular automata circuits. IEEE Trans. Nanotechnol. 18, 453–460 (2019)

    Article  ADS  Google Scholar 

  31. Gadim, M.R., Navimipour, N.J.: A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 1–11 (2017)

  32. Hayati, M., Rezaei, A.: Design of a new Optimized Universal Logic Gate for quantum-dot cellular automata. IETE J. Res. 1–7 (2019)

  33. Heikalabad, S.R., Asfestani, M.N., Hosseinzadeh, M.: A full adder structure without cross-wiring in quantum-dot cellular automata with energy dissipation analysis. J. Supercomput. 74(5), 1994–2005 (2018)

    Article  Google Scholar 

  34. Ajitha, D., Ramanaiah, K. V., and Sumalatha, V.: "A novel design of cascading serial bit-stream magnitude comparator using qca," in 2014 International Conference on Advances in Electronics Computers and Communications: IEEE, pp. 1–6 (2014)

  35. Ke-ming, Q. and Yin-shui, X.: "Quantum-dots cellular automata comparator," in 2007 7th International Conference on ASIC: IEEE, pp. 1297–1300 (2007)

  36. Mokhtarii, R. and Rezai, A., "Investigation and Design of Novel Comparator in quantum-dot cellular automata technology," Journal of Nano-and Electronic Physics, vol. 10, no. 5, (2018)

  37. Das, J.C., De, D.: Reversible comparator design using quantum dot-cellular automata. IETE J. Res. 62(3), 323–330 (2016)

    Article  Google Scholar 

  38. Shiri, A., Rezai, A., Mahmoodian, H.: Design of efficient coplanar COMPRATOR circuit in QCA technology. Facta Universitatis, Series: Electronics and Energetics. 32(1), 119–128 (2019)

    Google Scholar 

  39. Lampreht, B., et al., "Quantum-dot cellular automata serial comparator," in 2008 11th EUROMICRO Conference on Digital System Design Architectures, Methods and Tools: IEEE, pp. 447–452 (2008)

  40. Roy, S. S., Mukherjee, C., Panda, S., Mukhopadhyay, A. K., and Maji, B., "Layered T comparator design using quantum-dot cellular automata," in 2017 Devices for Integrated Circuit (DevIC): IEEE, pp. 90–94 (2017)

  41. Umira, S., Qadri, R., Bangi, Z., and Banday, M. T.: "A Novel Comparator-A Cryptographic Design in Quantum Dot Cellular Automata," in 2018 International Conference on Sustainable Energy, Electronics, and Computing Systems (SEEMS): IEEE, pp. 1–10 (2018)

  42. Jun-wen, L. and Yin-shui, X.: "A Novel Design of Quantum-Dots Cellular Automata Comparator Using Five-Input Majority Gate," in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT): IEEE, pp. 1–3 (2018)

  43. Deng, F., Xie, G., Zhang, Y., Peng, F., Lv, H.: A novel design and analysis of comparator with XNOR gate for QCA. Microprocess. Microsyst. 55, 131–135 (2017)

    Article  Google Scholar 

  44. Perri, S., Corsonello, P., Cocorullo, G.: Design of efficient binary comparators in quantum-dot cellular automata. IEEE Trans. Nanotechnol. 13(2), 192–202 (2013)

    Article  ADS  Google Scholar 

  45. Rashidi, H., Rezai, A., Soltany, S.: High-performance multiplexer architecture for quantum-dot cellular automata. J. Comput. Electron. 15(3), 968–981 (2016)

    Article  Google Scholar 

  46. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China Youth Fund Project (No.61701211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Gao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Wang, J., Fang, S. et al. A New Nano Design for Implementation of a Digital Comparator Based on Quantum-Dot Cellular Automata. Int J Theor Phys 60, 2358–2367 (2021). https://doi.org/10.1007/s10773-020-04499-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04499-w

Keywords

Navigation