Skip to main content
Log in

Evaluation of Mass Accommodation Coefficients of Water over a Wide Temperature Range and Determination of Diffusion Coefficient of Water in Nitrogen

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Diffusion coefficient of water in nitrogen (Dvg) is a critical thermophysical parameter. However, the widely used empirical parametrizations of Dvg are only applicable in the temperature range from 273 K to 373 K. In the supercooled range, the reported experimental values of Dvg is sparse, and Dvg varies with temperature in a way different from the empirical equations and the recently reported first-principles calculation. In this paper, Dvg values at given temperatures, including in the supercooled range, were determined using the evaporation kinetics of individual water droplets in nitrogen flow under well-controlled conditions. The KVH model capable of describing the rapid evaporation/condensation process of an individual water droplet was utilized, and the thermophysical/kinetic parameters were evaluated carefully. Through reviewing the literature values of mass accommodation coefficient (αM) for ice, ice with liquid-like layer, supercooled water, normal water, and hot water, it is observed that the Slogistic1 function presented by OriginPro® could describe the temperature dependence of αM well. Then, the radius vs. time curve of an individual water droplet was predicted from the KVH model by varying Dvg and then compared with the experimental curve recorded by the Electrodynamic Balance. The trial value of Dvg corresponding to the best agreement was treated as its experimental value. By reviewing and regression fitting of all available experimental data, an improved expression of Dvg is proposed. The accuracy is evaluated to be ± 4 % in the temperature range of 248 K to 600 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W.J. Massman, Atmos. Environ. 32, 1111 (1998)

    ADS  Google Scholar 

  2. F.A. Schwertz, J.E. Brow, J. Chem. Phys. 19, 640 (1951)

    ADS  Google Scholar 

  3. W.L. Crider, J. Am. Chem. Soc. 78, 924 (1956)

    Google Scholar 

  4. J.P. O’Connell, M.D. Gillespie, W.D. Krostek, J.M. Prausnitz, J. Phys. Chem. 73, 2000 (1969)

    Google Scholar 

  5. L. Merlivat, J. Chem. Phys. 69, 2864 (1978)

    ADS  Google Scholar 

  6. E.T. Nelson, J. Appl. Chem. 6, 286 (1956)

    Google Scholar 

  7. I. Nagata, T. Hasegawa, J. Chem. Eng. Jpn 3, 143 (1970)

    Google Scholar 

  8. A. Finch, P.J. Gardner, E. Tarbox, S. Yardley, J. Chem. Soc. Faraday Trans. 1(75), 545 (1979)

    Google Scholar 

  9. N. Matsunaga, M. Hori, A. Nagashima, Trans. Jpn Soc. Mech. Eng. B 57, 1091 (1991)

    Google Scholar 

  10. C.C.M. Luijten, K.J. Bosschaart, M.E.H. Van Dongen, Int. J. Heat Mass Transf. 40, 3497 (1997)

    Google Scholar 

  11. P. Peeters, C.C.M. Luijten, M.E.H. Van Dongen, Int. J. Heat Mass Transf. 44, 181 (2001)

    Google Scholar 

  12. M.A.L.J. Fransen, E. Sachteleben, J. Hrubý, D.M.J. Smeulders, Exp. Fluids 55, 1–17 (2014)

    Google Scholar 

  13. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd edn. (Wiley, New York, 2002).

    Google Scholar 

  14. C.R. Wilke, C.Y. Lee, Ind. Eng. Chem. 47, 1253 (1955)

    Google Scholar 

  15. E.N. Fuller, K. Ensley, J.C. Giddings, J. Phys. Chem. 73, 3679 (1969)

    Google Scholar 

  16. B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids (McGraw-Hill, New York, 2001).

    Google Scholar 

  17. R. Hellmann, A.H. Harvey, Geophys. Res. Lett. (2020). https://doi.org/10.1029/2020GL089999

    Article  Google Scholar 

  18. R. Hellmann, J. Chem. Eng. Data 64, 5959 (2019)

    Google Scholar 

  19. T.R. Marrero, E.A. Mason, J. Phys. Chem. Ref. Data 1, 3 (1972)

    ADS  Google Scholar 

  20. P.M. Winkler, A. Vrtala, R. Rudolf, P.E. Wagner, I. Riipinen, T. Vesala, K.E.J. Lehtinen, Y. Viisanen, M. Kulmala, J. Geophys. Res. Atmos. 111, 1 (2006)

    Google Scholar 

  21. H.R. Pruppacher, J.D. Klett, Microphysics of Clouds and Precipitation (Kluwer Academic Publishers, New York, 1997).

    Google Scholar 

  22. N. Matsunaga, A. Nagashima, J. Phys. Chem. 87, 5268 (1983)

    Google Scholar 

  23. E.N. Fuller, P.D. Schettler, J.C. Giddings, Ind. Eng. Chem. 58, 18 (1966)

    Google Scholar 

  24. R. Hellmann, A.H. Harvey, Geophys. Res. Lett. 47, 1 (2020)

    Google Scholar 

  25. Y.Y. Su, R.E.H. Miles, Z.M. Li, J.P. Reid, J. Xu, Phys. Chem. Chem. Phys. 20, 23453 (2018)

    Google Scholar 

  26. J.F. Davies, A.E. Haddrell, A.M.J. Rickards, J.P. Reid, Anal. Chem. 85, 5819 (2013)

    Google Scholar 

  27. Y.Y. Su, A. Marsh, A.E. Haddrell, Z.M. Li, J.P. Reid, J. Geophys. Res. Atmos. 122, 12317 (2017)

    ADS  Google Scholar 

  28. M.I. Cotterell, B.J. Mason, A.E. Carruthers, J.S. Walker, A.J. Orr-Ewing, J.P. Reid, Phys. Chem. Chem. Phys. 16, 2118 (2014)

    Google Scholar 

  29. J.F. Davies, R.E.H. Miles, A.E. Haddrell, J.P. Reid, J Geophys. Res. 119, 10.931 (2014)

    Google Scholar 

  30. R.E.H. Miles, J.P. Reid, I. Riipinen, J. Phys. Chem. A 116, 10810 (2012)

    Google Scholar 

  31. D.C. Taflin, S.H. Zhang, T. Allen, E. James Davis, AIChE J. 34, 1310 (1988)

    Google Scholar 

  32. C. Heinisch, J.B. Wills, J.P. Reid, T. Tschudi, C. Tropea, Phys. Chem. Chem. Phys. 11, 9720 (2009)

    Google Scholar 

  33. W. Wagner, A. Pruß, J. Phys. Chem. Ref. Data 31, 387 (2002)

    ADS  Google Scholar 

  34. D.M. Murphy, T. Koop, Q. J. R. Meteorol. Soc. 131, 1539 (2005)

    ADS  Google Scholar 

  35. V. Vinš, M. Fransen, J. Hykl, J. Hrubý, J. Phys. Chem. B 119, 5567 (2015)

    Google Scholar 

  36. W.M. Haynes, CRC Handbook of Chemistry and Physics, Internet Version (CRC Press/Taylor and Francis, Boca Raton, 2016).

    Google Scholar 

  37. Y.Q. Li, P. Davidovits, Q. Shi, T. Jayne, C.E. Kolb, D.R. Worsnop, J. Phys. Chem. A 105, 10632 (2001)

    Google Scholar 

  38. R.E.H. Miles, K.J. Knox, J.P. Reid, A.M.C. Laurain, L. Mitchem, Phys. Rev. Lett. 105, 1 (2010)

    Google Scholar 

  39. R. Hołyst, M. Litniewski, D. Jakubczyk, M. Zientara, M. Woźniak, Soft Matter 9, 7766 (2013)

    ADS  Google Scholar 

  40. J. Vieceli, M. Roeselová, D.J. Tobias, Chem. Phys. Lett. 393, 249 (2004)

    ADS  Google Scholar 

  41. A.L. Lindsay, L.A. Bromley, Ind. Eng. Chem. 42, 1508 (1950)

    Google Scholar 

  42. P.K. Tondon, S.C. Saxena, Appl. Sci. Res. 19, 163 (1968)

    Google Scholar 

  43. X. Kong, P. Papagiannakopoulos, E.S. Thomson, N. Marković, J.B.C. Pettersson, J. Phys. Chem. A 118, 3973 (2014)

    Google Scholar 

  44. M.E. Earle, T. Kuhn, A.F. Khalizov, J.J. Sloan, Atmos. Chem. Phys. 10, 7945 (2010)

    ADS  Google Scholar 

  45. N. Magee, A.M. Moyle, D. Lamb, Geophys. Res. Lett. 33, 1 (2006)

    Google Scholar 

  46. C. Delval, B. Fluckiger, M.J. Rossi, Atmos. Chem. Phys. 3, 1131 (2003)

    ADS  Google Scholar 

  47. H. Lu, S.A. McCartney, M. Chonde, D. Smyla, V. Sadtchenko, J. Chem. Phys. 125, 1 (2006)

    Google Scholar 

  48. V. Sadtchenko, M. Brindza, M. Chonde, B. Palmore, R. Eom, J. Chem. Phys. 121, 11980 (2004)

    ADS  Google Scholar 

  49. D. Rosenfeld, W.L. Woodley, Nature 405, 440 (2000)

    ADS  Google Scholar 

  50. C. Goy, M.A.C. Potenza, S. Dedera, M. Tomut, E. Guillerm, A. Kalinin, K.O. Voss, A. Schottelius, N. Petridis, A. Prosvetov, G. Tejeda, J.M. Fernández, C. Trautmann, F. Caupin, U. Glasmacher, R.E. Grisenti, Phys. Rev. Lett. 120, 2 (2018)

    Google Scholar 

  51. S. Nakamura, T. Yano, AIP Conf. Proc. 2132, 050005 (2019)

    Google Scholar 

  52. W.S. Drisdell, C.D. Cappa, J.D. Smith, R.J. Saykally, R.C. Cohen, Atmos. Chem. Phys. 8, 6699 (2008)

    ADS  Google Scholar 

  53. J.D. Smith, C.D. Cappa, W.S. Drisdell, R.C. Cohen, R.J. Saykally, J. Am. Chem. Soc. 128, 12892 (2006)

    Google Scholar 

  54. K. Kobayashi, S. Watanabe, D. Yamano, T. Yano, S. Fujikawa, Fluid Dyn. Res. 40, 585 (2008)

    ADS  Google Scholar 

  55. P.M. Winkler, A. Vrtala, P.E. Wagner, M. Kulmala, K.E.J. Lehtinen, T. Vesala, Phys. Rev. Lett. 93, 1 (2004)

    Google Scholar 

  56. A. Morita, M. Sugiyama, H. Kameda, S. Koda, D.R. Hanson, J. Phys. Chem. B 108, 9111 (2004)

    Google Scholar 

  57. G. Skarbalius, Molecular Dynamics Investigation of Water Evaporation/Condensation Processes (Kaunas University of Technology, Kaunas, 2019).

    Google Scholar 

  58. T.H. Yang, C. Pan, Int. J. Heat Mass Transf. 48, 3516 (2005)

    Google Scholar 

  59. G. Nagayama, T. Tsuruta, J. Chem. Phys. 118, 1392 (2003)

    ADS  Google Scholar 

  60. M. Matsumoto, Fluid Phase Equilib. 144, 307 (1998)

    Google Scholar 

  61. K. Yasuoka, M. Matsumoto, Y. Kataoka, J. Mol. Liq. 65–66, 329 (1995)

    Google Scholar 

  62. P.L. Barclay, J.R. Lukes, Langmuir 35, 6196 (2019)

    Google Scholar 

  63. P. Varilly, D. Chandler, J. Phys. Chem. B 117, 1419 (2013)

    Google Scholar 

  64. J. Julin, M. Shiraiwa, R.E.H. Miles, J.P. Reid, U. Pöschl, I. Riipinen, J. Phys. Chem. A 117, 410 (2013)

    Google Scholar 

  65. P. Louden, R. Schoenborn, C.P. Lawrence, Fluid Phase Equilib. 349, 83 (2013)

    Google Scholar 

  66. S. Takahama, L.M. Russell, J. Geophys. Res. Atmos. 116, 1 (2011)

    Google Scholar 

  67. T. Tsuruta, G. Nagayama, J. Phys. Chem. B 108, 1736 (2004)

    Google Scholar 

  68. T. Tsuruta, G. Nagayama, Energy 30, 795 (2005)

    Google Scholar 

  69. J. Vieceli, M. Roeselová, N. Potter, L.X. Dang, B.C. Garrett, D.J. Tobias, J. Phys. Chem. B 109, 15876 (2005)

    Google Scholar 

  70. S. Fujikawa, M. Maerefat, Nihon Kikai Gakkai Ronbunshu B Hen/Trans. Jpn Soc. Mech. Eng. B 56, 1376 (1990)

    Google Scholar 

  71. G. Rovelli, R.E.H. Miles, J.P. Reid, S.L. Clegg, J. Phys. Chem. A 120, 4376 (2016)

    Google Scholar 

  72. J.F. Davies, A.E. Haddrell, J.P. Reid, Aerosol Sci. Technol. 46, 666 (2012)

    ADS  Google Scholar 

  73. K. Rossié, Forsch. Auf Dem Geb. Ing. 19, 49 (1953)

    Google Scholar 

  74. H.Y. Erbil, M. Dogan, Langmuir 16, 9267 (2000)

    Google Scholar 

  75. E.W. Washburn (ed.), International Critical Tables of Numerical Data, Physics, Chemistry, and Technology, First Electronic. (Knovel, New York, 2003)

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China under Grant No. 11975185. Professor J. P. Reid at the University of Bristol, UK, is acknowledged for providing EDB for measurement. The authors would like to thank the anonymous reviewers who made thoughtful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyang Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Wang, W., Wang, W. et al. Evaluation of Mass Accommodation Coefficients of Water over a Wide Temperature Range and Determination of Diffusion Coefficient of Water in Nitrogen. Int J Thermophys 42, 47 (2021). https://doi.org/10.1007/s10765-021-02795-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02795-z

Keywords

Navigation