Skip to main content
Log in

Matching Condition of Direct THz-Signal Detection from On-Chip Resonating Antennas with CMOS Transistors in Non-resonant Plasma Wave Mode

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This paper presents matching condition for detector at THz frequencies, which directly read signals from an integrated antenna. We use direct THz-signal detections with CMOS transistors in non-resonant plasma wave mode, which are embedded in on-chip resonating antennas. The detector detects THz envelope signals directly from the side edges of the on-chip patch antennas. The signal detection mechanism is studied in the view of the impedance conditions of the antenna and the detector. The detectors are implemented with stacked transistors structures to achieve high responsivity. The measured responsivities of the detectors with antenna impedances that were simulated to be 599.7, 912.3, 1565, and 3190.6 Ω agree well with the calculated values. Moreover, the responsivity dependence on the detector impedance is shown with two different input impedances of the detectors. Since CMOS circuit models from foundry are not accurate at frequencies higher than f t , the matching guideline between the antenna and the detector is very useful in designing high responsivity detectors. This study found that a detector has to have a large input impedance conjugately matched to the antenna’s impedance to have high responsivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. E. Öjefors, U.R. Pfeiffer, A. Lisauskas, H.G. Roskos: A 0.65 THz Focal-Plane Array in a quarter-micron CMOS process technology. IEEE J. Solid State Circuits, vol. 44, no. 7, pp.1968–1976, (2009). doi: https://doi.org/10.1109/JSSC.2009.2021911

  2. S.-S. Hsu, K.-C. Wei, C.-Y. Hsu, H. Ru-Chuang: A 60-GHz millimeter-Wave CPW-fed Yagi antenna fabricated by using 0. 18-μm CMOS Technology. IEEE Electron Device Lett., vol. 29, no. 6, pp. 625–627, (2008). doi: https://doi.org/10.1109/LED.2008.920852

    Article  Google Scholar 

  3. T. hirano, K. Okada, J. hirokawa, M. Ando: 60 GHz on-chip patch antenna integrated in a 0. 13-μm CMOS technology. in ICUWB, (2010), pp. 4–7

  4. Y.-H. Chuang, H.-L. Yue, C.-Y. Hsu, H.-R. Chuang: A 77-GHz integrated on-chip Yagi antenna with unbalanced-to-balanced bandpass filter using IPD technology. in Asia Pacific Microwave Conference, (2011), pp. 449–452.

  5. U. R. Pfeiffer, E. Öjefors: A 600-GHz CMOS focal-plane array for terahertz imaging applications. ESSCIRC 2008 - 34th Eur. Solid-State Circuits Conf., (2008), pp. 110–113,

  6. F. Schuster, H. Videlier, A. Dupret, D. Coqulillat, M. Sakowicz, J.-P. Rostaing, M. Tchagaspanian, B. Giffard, W. Knap: A broadband THz imager in a low-cost CMOS technology. in IEEE ISSCC Tech. Dig., 2011, vol. Feb, no. 11, pp. 42–43. doi: https://doi.org/10.1109/ISSCC.2011.5746211

  7. R.A. Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Förster, H.M. Keller, A. Cathelin, A. Kaiser, U.R. Pfeiffer: A 1 K-pixel video camera for 0.7-1.1 terahertz imaging applications in 65-nm CMOS. IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 2999–3012, (2012). Doi: https://doi.org/10.1109/JSSC.2012.2217851

    Article  Google Scholar 

  8. E. Öjefors, U.R. Pfeiffer, S. Member, A. Lisauskas, H.G. Roskos: A 0.65 THz focal-plane array in a quarter-micron technology. IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 1968–1976, (2009). doi: https://doi.org/10.1109/JSSC.2009.2021911

    Article  Google Scholar 

  9. M. Uzunkol, O. D. Gurbuz, F. Golcuk, G. M. Rebeiz: A 0.32 THz SiGe 4x4 imaging array using high-efficiency on-chip antennas. IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2056–2066, (2013). doi: https://doi.org/10.1109/JSSC.2009.2021911

    Article  Google Scholar 

  10. S. Chai, S. Lim, S. Hong: THz detector with an antenna coupled stacked CMOS plasma-Wave FET. IEEE Microw. Wirel. Components Lett., vol. 24, no. 12, pp. 869–871, (2014). doi: https://doi.org/10.1109/LMWC.2014.2353211

    Article  Google Scholar 

  11. M. Mundt, D. Seliuta, L. Minkevičius, I. Kašalynas, G. Valušis, M. Mittendorff, S. Winnerl, V. Krozer, H.G. Roskos: CMOS integrated antenna-coupled field-effect transistors for the detection of radiation from 0.2 to 4.3 THz. IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp. 3834–3843, (2012). doi: https://doi.org/10.1109/TMTT.2012.2221732

    Article  Google Scholar 

  12. H.-J. Song, T. Nagatsuma: Present and future of terahertz communications. IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 256–263, (2011). doi: https://doi.org/10.1109/TTHZ.2011.2159552

    Article  Google Scholar 

  13. M. I. Dyakonov, M. S. Shur: Plasma wave ectronics: novel terahertz devices using two dimensional electron fluid. IEEE Trans. Electron Devices, vol. 43, no. 10, pp. 1640–1645, (1996). doi: https://doi.org/10.1109/16.536809

    Article  Google Scholar 

  14. M. Dyakonov, M. Shur: Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. Electron Devices, IEEE Trans., vol. 43, no. 3, pp. 380–387, (1996). doi: https://doi.org/10.1109/16.536809

    Google Scholar 

  15. A. Lisauskas, S. Boppel, M. Mundt, V. Krozer, H.G. Roskos: Subharmonic mixing with field-effect transistors: theory and experiment at 639 GHz high above. IEEE Sens. J., vol. 13, no. 1, pp. 124–132, (2013). doi: https://doi.org/10.1109/JSEN.2012.2223668

    Article  Google Scholar 

  16. T. a Elkhatib, V. Y. Kachorovskii, W. J. Stillman, D. B. Veksler, K. N. Salama, X. Zhang, M. S. Shur: Enhanced plasma wave detection of terahertz radiation using multiple high electron-mobility transistors connected in series. IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 331–339, (2010). doi: https://doi.org/10.1109/TMTT.2009.2037872

    Article  Google Scholar 

  17. D. Veksler, F. Teppe, A. Dmitriev, V. Kachorovskii, W. Knap, M. Shur: Detection of terahertz radiation in gated two-dimensional structures governed by dc current. Phys. Rev. B, vol. 73, no. 12, pp. 1–10, Mar. (2006). Doi: https://doi.org/10.1103/PhysRevB.73.125328

  18. T. A. Elkhatib, V. Y. Kachorovskii, W. J. Stillman, S. Rumyantsev, X. Zhang, M. S. Shur: Terahertz response of field-effect transistors in saturation regime. Appl. Phys. Lett., vol. 243505, pp. 2011–2014, (2011). Doi: https://doi.org/10.1063/1.3584137

    Google Scholar 

  19. W. Stillman, M. S. Shur, D. Veksler, S. Rumyantsev, F. Guarin: Device loading effects on nonresonant detection of terahertz radiation by silicon MOSFETs. Electron. Lett., vol. 43, no. 7, pp. 7–8, (2007). doi: https://doi.org/10.1049/el:20073475

    Article  Google Scholar 

  20. U. Pfeiffer, E. Öjefors: A CMOS focal-plane array for heterodyne terahertz imaging. in IEEE RFIC Symp., 2009, no. c, pp. 433–436. (2009). doi: https://doi.org/10.1109/RFIC.2009.5135574

  21. F. Golcuk, O. D. Gurbuz, G. M. Rebeiz: A 0.39–0.44 THz 2x4 amplifier-quadrupler array with peak EIRP of 3–4 dBm. IEEE Trans. Microw. Theory Tech., vol. 61, no. 12, pp. 4483–4491, (2013). doi: https://doi.org/10.1109/TMTT.2013.2287493

    Article  Google Scholar 

  22. A. Lisauskas, U. Pfeiffer, E. Öjefors, P.H. Bolívar, D. Glaab, H.G. Roskos: Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors. J. Appl. Phys., vol. 105, no. 11, p. 114511, (2009). doi: https://doi.org/10.1063/1.3140611

    Article  Google Scholar 

  23. S. Preu, S. Kim, R. verma, P.C.Burke, N.S. Sherwin, C. cossard: An improved model for non-resonant terahertz detection in field-effect transistors. J. Appl. Phys., vol. 024502, pp. 1–9, (2012). doi: https://doi.org/10.1063/1.3676211

  24. M. Sakhno, A. Golenkov, F. Sizov: Uncooled detector challenges: millimeter-wave and terahertz long channel field effect transistor and Schottky barrier diode detectors. J. Appl. Phys., vol. 114, no. 16, p. 164503, (2013). doi: https://doi.org/10.1063/1.4826364

    Article  Google Scholar 

  25. M. Sakowicz, M.B. Lifshits, O.A. Klimenko, F. Schuster, D. Coquillat, F. Teppe, W. Knap: Terahertz responsivity of field effect transistors versus their static channel conductivity and loading effects. J. Appl. Phys., vol. 110, no. 5, (2011). doi: https://doi.org/10.1063/1.3632058

  26. C. A. Balanis, Antenna theory analysis and design, 3rd edn. (Wiley-Interscience 1997).

  27. X. Jin, J.-J. Ou, C.-H. Chen, W. Liu, M.J. Deen, P.R. Gray, C. Hu: An effective gate resistance model for CMOS RF and noise modeling. Int. Electron Devices Meet. 1998. Tech. Dig. (Cat. No.98CH36217), pp. 961–964, (1998). doi: https://doi.org/10.1109/IEDM.1998.746514

  28. H.T. Friis: A note on a simple transmission formula. Proc. IRE Waves Electrons, vol. 34, no. 5, pp. 254–256, (1946). doi: https://doi.org/10.1109/JRPROC.1946.234568

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Pioneer Research Center Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT & Future Planning (No.2012-0009594).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, S., Lim, S., Kim, CY. et al. Matching Condition of Direct THz-Signal Detection from On-Chip Resonating Antennas with CMOS Transistors in Non-resonant Plasma Wave Mode. J Infrared Milli Terahz Waves 39, 521–534 (2018). https://doi.org/10.1007/s10762-018-0490-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0490-6

Keywords

Navigation