Skip to main content

Advertisement

Log in

The prokaryotic community in an extreme Antarctic environment: the brines of Boulder Clay lakes (Northern Victoria Land)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

During summer 2014, three hypersaline brines were discovered in two frozen lakes of Boulder Clay (Northern Victoria Valley, Antarctica). Ongoing research seeks to gain novel insights on the microbial ecology of such environments, in order to further the understanding of life adaptation to extreme conditions. To this aim, the abundance of prokaryotic cells (including cell morphologies and size for biomass conversion), the amount of viable cells (in terms of membrane-intact cells and respiring cells), the viral count, the physiological profiles at community level and the main microbial enzymatic activities were described. The brines differed each other in terms of prokaryotic cells’ abundance, size, and viability as well as viral abundance. Cell morphotypes and metabolic responses also varied among the brine samples. Underground interconnections were likely to occur, with the microbial community becoming more abundant and structured to better exploit the limited resource availability. Overall, complex interactions among multiple environmental factors, including marine water origin, depth horizon, isolation time of the brines, and climatic variations, reflected on the microbial community distribution patterns and highlighted the need to preserve these niches of extreme life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bellard, C., C. Bertelsmeier, P. Leadley, W. Thuiller & F. Courchamp, 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365–377.

    PubMed  PubMed Central  Google Scholar 

  • Brussaard, C., 2004a. Viral control of phytoplankton populations – a review. Journal of Eukaryotic Microbiology 51(2): 125–138.

    Google Scholar 

  • Brussaard, C., 2004b. Optimization of procedures for counting viruses by flow cytometry. Applied and Environmental Microbiology 70: 1506–1513.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brüssow, H., 2009. The not so universal tree of life or the place of viruses in the living world. Philosophical Transactions Royal Society B Biological Sciences 364: 2263–2274.

    Google Scholar 

  • Cannone, N., D. Wagner, H. W. Hubberten & M. Guglielmin, 2008. Biotic and abiotic factors influencing soil properties across a latitudinal gradient in Victoria Land, Antarctica. Geoderma 144: 50–65.

    CAS  Google Scholar 

  • Cavicchioli, R., 2015. Microbial ecology of Antarctic aquatic systems. Nature Reviews Microbiology 13: 691–706.

    CAS  PubMed  Google Scholar 

  • Colangelo-Lillis, J., H. Eicken, S. D. Carpenter & J. W. Deming, 2016. Evidence for marine origin and microbial-viral habitability of sub-zero hypersaline aqueous inclusions within permafrost near Barrow, Alaska. FEMS Microbiology Ecology 92: fiw053.

    CAS  PubMed  Google Scholar 

  • Cowan, D. A., N. J. Russell, A. Mamais & D. M. Sheppard, 2002. Antarctic Dry Valley mineral soils contain unexpectedly high levels of microbial biomass. Extremophiles 6: 431–436.

    CAS  PubMed  Google Scholar 

  • Fillinger, S., G. Ruijter, M. J. Tamás, J. Visser, J. M. Yhevelein & C. d’Enfert, 2001. Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans. Molecular Microbiology 39: 145–157.

    CAS  PubMed  Google Scholar 

  • Forte, E., M. Dalle Fratte, M. Azzaro & M. Guglielmin, 2016. Pressurized brines in continental Antarctica as a possible analogue of Mars. Scientific Reports 6: 33158.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garland, J. R., 1996. Analytical approaches to the characterization of samples of microbial communities using patterns of potential C source utilization. Soil Biology Biochemistry 28(2): 213–221.

    CAS  Google Scholar 

  • Garland, J. R. & L. Mills, 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Applied Environmental Microbiology 57(8): 2351–2359.

    CAS  PubMed  Google Scholar 

  • Gasol, J. M. & A. Del Giorgio, 2000. Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities. Scientia Marina 64: 197–224.

    Google Scholar 

  • Gentile, G., G. Maimone, R. La Ferla, M. Azzaro, M. Catalfamo, M. Genovese, S. Santisi, M. Maldani, A. Macrì & S. Cappello, 2020. Phenotypic variations of Oleispira antarctica RB8Tin different growth conditions. Current Microbiology. https://doi.org/10.1007/s00284-020-02143-8.

    Article  PubMed  Google Scholar 

  • Gilichinsky, D., E. Rivkina, V. Shcherbakova, K. Laurinavichuis & J. Tiedje, 2003. Super cooled water brines within permafrost – an unknown ecological niche for microorganism: a model for astrobiology. Astrobiology 3(2): 331–341.

    CAS  PubMed  Google Scholar 

  • Gilichinsky, D., E. Rivkina, C. Bakermans, V. Shcherbakova, L. Petrovskaya, S. Ozerskaya, N. Ivanushkina, G. Kochkina, K. Laurinavichuis, S. Pecheritsina, R. Fattakhova & J. M. Tiedje, 2005. Biodiversity of cryopegs in permafrost. FEMS Microbial Ecology 53: 117–128.

    CAS  Google Scholar 

  • Gilichinsky, D. A., G. S. Wilson, E. I. Friedmann, C. P. McKay, R. S. Sletten, E. M. Rivkina, T. A. Vishnivetskaya, L. G. Erokhina, N. E. Ivanushkina, G. A. Kochkina, V. A. Shcherbakova, V. S. Soina, E. V. Spirina, E. A. Vorobyova, D. G. Fyodorov-Davydov, B. Hallet, S. M. Ozerskaya, V. A. Sorokovikov, K. S. Laurinavichyus, A. V. Shatilovich, J. P. Chanton, V. E. Ostroumov & J. M. Tiedje, 2007. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology 7(2): 275–311.

    CAS  PubMed  Google Scholar 

  • Gugliemin, M. & N. Cannone, 2012. A permafrost warming in a cooling Antarctica? Climatic Change 111: 177–195.

    Google Scholar 

  • Guglielmin, M., A. Biasini & C. Smiraglia, 1997. The contribution of geoelectrical investigations in the analysis of periglacial and glacial landforms in ice free areas of the northern foothills (Northern Victoria Land, Antarctica). Geografiska Annaler: Series A, Physical Geography 79(1–2): 17–24.

    Google Scholar 

  • Guglielmin, M., A. G. Lewkowicz, H. M. French & A. Strini, 2009. Lake-ice blisters, Terra Nova Bay area, Northern Victoria Land, Antarctica. Geografiska Annale Series A, Physical Geography 91(2): 99–111.

    Google Scholar 

  • Guglielmin, M., M. Dalle Fratte & N. Cannone, 2014. Permafrost warming and vegetation changes in continental Antarctica. Environmental Research Letters 9: 45001.

    Google Scholar 

  • Heinz, J., J. Schirmack, A. Airo, S. P. Kounaves & D. Schulze-Makuch, 2018. Enhanced microbial survivability in subzero brines. Astrobiology 18(9): 1171–1180.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heinz, J., A. C. Waajen, A. Airo, A. Alibrandi, J. Schirmack & D. Schulze-Makuch, 2020. Bacterial growth in chloride and perchlorate brines: halotolerances and salt stress responses of Planococcus halocryophilus. Astrobiology 20(2): 1377–1387.

    Google Scholar 

  • Hoppe, H. G., 1993. Use of fluorogenic model substrates for extracellular enzyme activity (EEA) measurement of bacteria. In Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of methods in aquatic microbial ecology. FL Lewis Publisher, Boca Raton: 423–432.

    Google Scholar 

  • Jacquet, S., T. Miki, R. Noble, P. Peduzzi & S. Wilhelm, 2010. Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology. Advances in Oceanography and Limnology 1(1): 97–141.

    CAS  Google Scholar 

  • Jansson, J. K. & N. Taş, 2014. The microbial ecology of permafrost. Nature Reviews Microbiology 12(6): 414–425.

    CAS  PubMed  Google Scholar 

  • Kalcheva, H., M. Beshkova, L. Pehlivanov & R. Kalcev, 2008. Bacterioplankton dynamics and the influence of environmental factors on it in the SrebarnaLake. The third international scientific conference BALWOIS, Ohrid, Republic of Macedonia 27, 31 May 2008.

  • Kalcheva, H., R. Kalchev & M. Beshkova, 2014. Bacterioplankton of Wetlands along the lower Danube (Bulgaria) and its relation to environmental factors. Acta Zoologica Bulgarica 7: 83–89.

    Google Scholar 

  • Karl, D. M., D. F. Bird, K. Björkman, T. Houlihan, R. Shackelford & L. Tupas, 1999. Microorganisms in the accreted ice of LakeVostok, Antarctica. Science 286: 144–2147.

    Google Scholar 

  • Kuhn, E., A. S. Ichimura, V. Peng, C. H. Fritsen, G. Trubl, P. T. Doran & A. E. Murray, 2014. Brine assemblages of ultrasmall microbial cells within the ice cover of Lake Vida, Antarctica. Applied Environmental Microbiology 80(12): 687–3698.

    Google Scholar 

  • La Ferla, R., G. Maimone, M. Azzaro, F. Conversano, C. Brunet, A. S. Cabral & R. Paranhos, 2012. Vertical distribution of the prokaryotic cell size in the Mediterranean Sea. Helgoland Marine Research 66: 635–650.

    Google Scholar 

  • La Ferla, R., G. Maimone, G. Caruso, F. Azzaro, M. Azzaro, F. Decembrini, A. Cosenza, M. Leonardi & R. Paranhos, 2014. Are prokaryotic cell shape and size suitable to ecosystem characterization? Hydrobiologia 726: 65–80.

    Google Scholar 

  • La Ferla, R., G. Maimone, A. Lo Giudice, F. Azzaro, A. Cosenza & M. Azzaro, 2015. Cell size and other phenotypic traits of prokaryotic cells in pelagic areas of the Ross Sea (Antarctica). Hydrobiologia 761: 181–194.

    Google Scholar 

  • La Ferla, R., M. Azzaro, L. Michaud, G. Caruso, A. Lo Giudice, R. Paranhos, A. S. Cabral, A. Conte, A. Cosenza, G. Maimone, M. Papale, A. C. Rappazzo & M. Guglielmin, 2017. Prokaryotic abundance and activity in permafrost of the northern Victoria Land and upper Victoria Valley (Antarctica). Microbial Ecology 74(2): 402–415.

    PubMed  Google Scholar 

  • Le Romancer, M., M. Gaillard, C. Geslin & D. Prieur, 2007. Viruses in extreme environments. Reviews Environmental Science and Bio-Tecnology 6: 17–31.

    Google Scholar 

  • Lo Giudice, A., A. Conte, M. Papale, C. Rizzo, M. Azzaro & M. Guglielmin, 2021. Prokaryotic diversity and metabolically active communities in brines from two perennially ice-covered Antarctic lakes. Astrobiology. https://doi.org/10.1089/ast.2020.2238.

    Article  PubMed  Google Scholar 

  • Loferer-Krössbacher, M., J. Klima & R. Psenner, 1998. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Applied Environmental Microbiology 64: 688–694.

    PubMed  Google Scholar 

  • Los, D. A. & N. Murata, 2004. Membrane fluidity and its roles in the perception of environmental signals. BiochimicaBiophysicaActa 1666: 142–157.

    CAS  Google Scholar 

  • Luhtanene, M. A., E. Eronen-Rasimus, H. M. Oksanen, J. L. Tison, B. Delille, G. S. Dieckmann, J. M. Rintala & D. H. Bamford, 2018. The first known virus isolates from Antarctic sea ice have complex infection patterns. FEMS Microbiology Ecology 94: fiy028.

    Google Scholar 

  • Madigan, M. T., J. M. Martinko & J. Parker, 2003. Extremely halophilic Archaea. In Carlson, G., S. L. Snavely, D. Wechsler & K. Schiaparelli (eds), Brock Biology of Microorganisms. Prentice Hall, Upper Saddle River: 448–452.

    Google Scholar 

  • Malone, J. L., M. C. Castro, C. M. Hall, P. T. Doran, F. Kenig & C. P. McKay, 2010. New insights into the origin and evolution of lake Vida, McMurdo Dry Valleys, Antarctica – a noble gas study in ice and brines. Earth Planetary Science Letters 289: 112–122.

    CAS  Google Scholar 

  • Mann, P. J., W. V. Sobczak, M. M. LaRue, E. Bulygina, J. E. Vonk, J. Schade, S. Davydov, N. Zimov, R. M. Holmes & R. G. M. Spencer, 2014. Evidence for key enzymatic controls on metabolism of Arctic river organic matter. Global Change Biology 20: 1089–1100.

    PubMed  Google Scholar 

  • Meola, M., A. Lazzaro & J. Zeyer, 2015. Bacterial composition and survival on Sahara Dust particles transported to the European Alps. Frontiers Microbiology 6: 1454.

    Google Scholar 

  • Michaud, L., A. Lo Giudice, M. Mysara, P. Monsieurs, C. Raffa, N. Leys, S. Amalfitano & R. Van Houdt, 2014. Snow surface microbiome on the high Antarctic Plateau (DOME C). PLoS ONE 9: e104505.

    PubMed  PubMed Central  Google Scholar 

  • Mikucki, J. A., C. M. Foreman, B. Sattler, W. B. Lyons & J. C. Priscu, 2004. Geomicrobiology of blood falls: an iron-rich saline discharge at the terminus of the Taylor glacier, Antarctica. Aquatic Geochemistry 10: 199–220.

    CAS  Google Scholar 

  • Mikucki, J. A., E. Auken, S. Tulaczyk, R. A. Virginia, C. Schamper, K. I. Sørensen, P. T. Doran, H. Dugan & N. Foley, 2015. Deep groundwater and potential subsurface habitats beneath an Antarctic dry valley. Nature Communications 6: 6831.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mock, T. & D. N. Thomas, 2005. Recent advances in sea-ice microbiology. Environmental Microbiology 7: 605–619.

    CAS  PubMed  Google Scholar 

  • Mosier, A. C., A. E. Murray & C. H. Fritsen, 2007. Microbiota within the perennial ice cover of Lake Vida, Antarctica. FEMS Microbiology Ecology 59: 274–288.

    CAS  PubMed  Google Scholar 

  • Murray, A. E., F. Kenig, C. H. Fritsen, C. P. McKay, K. M. Cawley, R. Edwards, E. Kuhn, D. M. McKnight, N. E. Ostrom, V. Peng, A. Ponce, J. C. Priscu, V. Samarkin, A. T. Townsend, P. Wagh, S. A. Young, P. T. Yung & P. T. Doran, 2012. Microbial life at -13 C in the brine of an ice-sealed Antarctic lake. Proceedings National Academy Sciences USA 109(50): 20626–20631.

    CAS  Google Scholar 

  • Oksanen J., F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M.H.H. Stevens, E. Szoecs, H. Wagner, 2018. vegan: Community Ecology Package. R package version 2.3-3. https://CRAN.R-project.org/packagevegan.

  • Orombelli, G., C. Baroni & G. H. Denton, 1990. Late Cenozoic glacial history of the Terra Nova Bay region, Northern Victoria Land, Antarctica. Geografia Fisica Dinamica Quaternaria 13: 139–163.

    Google Scholar 

  • Papale, M., A. Conte, A. Mikkonen, L. Michaud, R. La Ferla, M. Azzaro, G. Caruso, R. Paranhos, A. S. Cabral, G. Maimone, A. C. Rappazzo, C. Rizzo, N. Spanò, A. Lo Giudice & M. Guglielmin, 2018. Prokaryotic assemblages within permafrost active layer at Edmonson Point (Northern Victoria Land, Antarctica). Soil Biology & Biochemistry 123: 165–179.

    CAS  Google Scholar 

  • Papale, M., A. Lo Giudice, A. Conte, C. Rizzo, A. C. Rappazzo, G. Maimone, G. Caruso, R. La Ferla, M. Azzaro, C. Gugliandolo, R. Paranhos, A. S. Cabral, V. R. Spica & M. Guglielmin, 2019. Microbial assemblages in pressurized Antarctic brine pockets (Tarn Flat, Northern Victoria Land): a hotspot of biodiversity and activity. Microorganisms 7: 333.

    CAS  PubMed Central  Google Scholar 

  • Parikka, K. J., M. Le Romancer, N. Wauters & S. Jacquet, 2016. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus–host relationships in a variety of ecosystems. Biological Reviews 92(2): 1081–1100.

    PubMed  Google Scholar 

  • Pearce, D. A., 2012. Extremophiles in Antarctica: Life at Low Temperatures. In Stan-Lotter, H. & S. Fendrihan (eds), Adaption of Microbial Life to Environmental Extremes. Springer, Vienna: 87–218.

    Google Scholar 

  • Pernthaler, J., 2005. Predation on prokaryotes in the water column and its ecological implications. Nature Reviews Microbiology 3: 537–546.

    CAS  PubMed  Google Scholar 

  • Porcino, N., A. Cosenza & M. Azzaro, 2020. A review on the geochemistry of lakes in Victoria Land (Antarctica). Chemosphere 251: 126229.

    CAS  PubMed  Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology Oceanography 25: 943–948.

    Google Scholar 

  • Posch, T., J. Pernthaler, A. Alfreider & R. Psenner, 1997. Cell-specific respiratory activity of aquatic bacteria studied with the tetrazolium reduction method, cyto-clear slides, and image analysis. Applied Environmental Microbiology 63(3): 867–873.

    CAS  PubMed  Google Scholar 

  • Rampelotto, P. H., 2014. Polar microbiology: recent advances and future perspectives. Biology 3(1): 81–84.

    PubMed Central  Google Scholar 

  • Reese, B.K., J.A. Koester, J. Kirkpatrick, T. Konotchick, L. Zeigler Allen & C. Dziallas, 2014. How extreme is extreme? In P.F. Kemp (ed), Eco-DAS X Symposium Proceedings ASLO pp. 66–87

  • Rizzo, C., A. Conte, M. Azzaro, M. Papale, A. C. Rappazzo, D. Battistel, M. Roman, A. Lo Giudice & M. Guglielmin, 2020. Cultivable bacterial communities in brines from perennially ice-covered and Pristine AntarcticLakes: ecological and biotechnological implications. Microorganisms 8: 819.

    CAS  PubMed Central  Google Scholar 

  • Sala, M. M., L. Arin, V. Balagué, J. Felipe, Ò. Guadayol & D. Vaqué, 2005. Functional diversity of bacterioplankton assemblages in Western Antarctic seawaters during late spring. Marine Ecology Progress Series 292: 13–21.

    CAS  Google Scholar 

  • Sala, M. M., M. Estrada & J. M. Gasol, 2006. Seasonal changes in the functional diversity of bacterioplankton in contrasting coastal environments of the NW Mediterranean. Aquatic Microbial Ecology 44: 1–9.

    Google Scholar 

  • Sannino, C., L. Borruso, A. Mezzasoma, D. Battistel, L. Zucconi, L. Selbmann, M. Azzaro, S. Onofri, B. Turchetti, P. Buzzini & M. Guglielmin, 2020. Intra- and inter-cores fungal diversity suggests interconnection of different habitats in an Antarctic frozen lake (Boulder Clay, Northern Victoria Land). Environmental Microbiology. 22(8): 3463–3477.

    CAS  PubMed  Google Scholar 

  • Shapira, M., M. J. Buscot, S. C. Leterme, T. Pollet, C. Chapperon & L. Seuront, 2009. Distribution of heterotrophic bacteria and virus-like particles along a salinity gradient in a hypersaline coastal lagoon. Aquatic Microbial Ecology 54: 171–183.

    Google Scholar 

  • Schuur, E. A. G., A. D. McGuire, C. Schädel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, P. Kuhry, D. M. Lawrence, S. M. Natali, D. Olefeldt, V. E. Romanovsky, K. Schaefer, M. R. Turetsky, C. C. Treat & J. E. Vonk, 2015. Climate change and the permafrost carbon feedback. Nature 520: 171–179.

    CAS  PubMed  Google Scholar 

  • Stan-Lotter, H., 2012. Physico-chemical boundaries of life. In Stan-Lotter, H. & S. Fendrihan (eds), Adaptation of Microbial Life to Environmental Extremes. Novel Research Results and Application. Springer, Wien New York: 7–12. ISBN 978-3-211-99690-4.

    Google Scholar 

  • Team, R.C., 2013. R: a Language and Environment for Statistical Computing. Vienna, Austria. http://www.R-project.org. Accessed 2014 April 15.

  • Thingstad, T. F., L. Øvreås, J. K. Egge, T. Løvadal & M. Heldal, 2005. Use of non-limiting substrates to increase size: a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs? Ecology Letters 8: 675–682.

    Google Scholar 

  • Urbini, S., G. Bianchi-Fasani, P. Mozzanti, A. Rocca, L. Vittuari, A. Zanutta, V. A. Girelli, M. Serafini, A. Zirizzotti & M. Frezzotti, 2019. Multi-temporal investigation of the Boulder Clay Glacier and Northern Foothills (Victoria Land, Antarctica) by integrated surveying techniques. Remote Sensing 11(12): 1501.

    Google Scholar 

  • Verde, C., D. Giordano, C. M. Bellas, G. di Prisco & A. M. Anesio, 2016. Polar marine microorganisms and climate change. In Poole, R. K. (ed.), Advances in Microbial Physiology, Vol. 69. Academic Press, Oxford.

    Google Scholar 

  • Wagner, D., S. Kobabe & S. Liebner, 2009. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, north eastern Siberia. Canadian Journal Microbiology 55: 73–83.

    CAS  Google Scholar 

  • Watson, T., 2019. The trickster microbes shaking up the tree of life. Nature 569: 322–324.

    CAS  PubMed  Google Scholar 

  • Wei, T., 2013. Corrplot: visualization of a correlation matrix. R package version 0.60.

  • Wells, L. & J. W. Deming, 2006. Modelled and measured dynamics of viruses in Arctic winter sea-ice brines. Environmental Microbiology 8(6): 1115–1121.

    PubMed  Google Scholar 

  • Wommack, K. E. & R. R. Colwell, 2000. Virioplankton: Viruses in aquatic ecosystems. Microbiology Molecular Biology Reviews 64: 69–114.

    CAS  PubMed  Google Scholar 

  • Yau, S. & M. Seth-Pasricha, 2019. Viruses of polar aquatic environments. Viruses 11: 189.

    CAS  PubMed Central  Google Scholar 

  • Young, K. D., 2006. The selective value of bacterial shape. Microbiology Molecular Biology Reviews 70: 660–703.

    PubMed  Google Scholar 

  • Zar, J. H., 1996. Biostatistical Analysis, 3rd ed. Prentice Hall, New Jersey.

    Google Scholar 

  • Zhong, Z. P., J. Z. Rapp, J. M. Wainaina, N. E. Solonenko, H. Maughan, S. D. Carpenter, Z. S. Cooper, H. B. Jang, B. Bolduc, J. W. Deming & M. B. Sullivan, 2020. Viral ecogenomics of Arctic Cryopeg Brine and Sea Ice. Ecological and Evolutionary Science. https://doi.org/10.1128/mSystems.00246-20.

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the Associated Editor for his punctual and precise advice and the reviewers for their relevant suggestions. This research was supported by grants from the National Antarctic Research Program (PNRA), the Italian Ministry of Education and Research (Research Project PNRA 2013/AZ1.05, PNRA 2016_00194-A1; PNRA 2018_00186-E) and from the National Council of Research in the frame of the Short Term Mobility program (STM AMMCNT. CNR protocol n. 0058167–02/09/2015 and STM AMMCNT. CNR protocol n.0070784- 15/10/2019). Dr. Anderson S. Cabral was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. The authors thank Dr. Michele Dalle Fratte for his role in the drilling and sampling procedures as well as all the staff at “Mario Zucchelli” Station in Antarctica who made this research possible, thanks to his logistic help and support. Thanks are also due to Dr. Anderson Aquino, Laboratory of Hidrobiologia of UFRJ (Brazil) for his technical assistance in the flow cytometry analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Azzaro.

Additional information

Handling editor: Stefano Amalfitano

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azzaro, M., Maimone, G., La Ferla, R. et al. The prokaryotic community in an extreme Antarctic environment: the brines of Boulder Clay lakes (Northern Victoria Land). Hydrobiologia 848, 1837–1857 (2021). https://doi.org/10.1007/s10750-021-04557-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04557-2

Keywords

Navigation