Skip to main content
Log in

Effects of functional diversity and salinization on zooplankton productivity: an experimental approach

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Quantifying the interactions between functional diversity and environmental change is important for understanding the effects of biodiversity on ecosystem processes. This study aims to evaluate zooplankton secondary production and biomass in an experiment with different levels of functional diversity and environmental stress in the form of increased salinity. It is expected that communities that are more functionally diverse will present higher secondary production and biomass, even under conditions of environmental stress. To test this hypothesis, a mesocosm experiment with two factors was performed: low and high diversity and with and without salt totaling four possible combinations of treatments over the duration of 4 weeks. The high functional diversity treatments showed higher zooplankton secondary production and biomass than those of the low diversity treatments, even under salt addition. The salinity decreased zooplankton production and functional diversity, but its effects were more pronounced in the low than in the high diversity communities. However, in the low diversity treatments the zooplankton biomass and production were maintained due to the dominance of species with certain traits. In summary, our study contributed to understanding the role of zooplankton functional diversity on ecosystem processes in the face of environmental changes promoted by increased salinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amsinck, S., A. Strzelczak, R. Bjerring, F. Landkildehus, T. Lauridsen, K. Chritoffersen & E. Jeppensen, 2006. Lake depth rather than fish planktivory determines cladoceran community structure in Faroese lakes: evidence from on temporary data and sediments. Freshwater Biology 51: 2124–2142.

    Article  CAS  Google Scholar 

  • Araújo, L. R., P. M. Lopes, J. M. Santangelo, F. D. A. Esteves & R. L. Bozelli, 2015. Long-term dynamics of the zooplankton community during large salinity fluctuations in a coastal lagoon. Marine and Freshwater Research 66: 352–359.

    Article  Google Scholar 

  • Barnett, A. J., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshwater Biology 52: 796–813.

    Article  Google Scholar 

  • Barton, K., 2019. MuMIn: Multi-Model Inference., R package version 1.43.6.

  • Bates, D., M. Maechler, B. Bolker & S. Walker, 2015. fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1–48.

    Article  Google Scholar 

  • Bottrell, H. H., A. Ducan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hilbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. Review of some problems in zooplankton production studies. Norw. Journal of Zoology 24: 419–456.

    Google Scholar 

  • Bracken, M. E. S. & N. H. N. Low, 2012. Realistic losses of rare species disproportionately impact higher trophic levels. Ecology Letters 15: 461–467.

    Article  PubMed  Google Scholar 

  • Calhoun, A. J. K., D. M. Mushet, K. P. Bell, D. Boix, J. A. Fitzsimons & F. Isselin-Nondedeu, 2017. Temporary wetlands: challenges and solutions to conserving a ‘disappearing’ ecosystem. Biological Conservation 211: 3–11.

    Article  Google Scholar 

  • Caliman, A., L. S. Carneiro, J. J. F. Leal, V. F. Farjalla, R. L. Bozelli & F. A. Esteves, 2013. Biodiversity effects of ecosystem engineers are stronger on more complex ecosystem processes. Ecology 94: 1977–1985.

    Article  PubMed  Google Scholar 

  • Cardinale, B. J., D. S. Srivastava, J. E. Duffy, J. P. Wright, A. L. Downing, M. Sankaran & C. Jouseau, 2006. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443: 4–7.

    Article  CAS  Google Scholar 

  • Castillo, A. M., D. M. T. Sharpe, C. K. Ghalambor & L. F. De León, 2018. Exploring the effects of salinization on trophic diversity in freshwater ecosystems: a quantitative review. Hydrobiologia 807: 1–17.

    Article  CAS  Google Scholar 

  • Chapin, F. S., E. S. Zavaleta, V. T. Eviner, R. L. Naylor, P. M. Vitousek, H. L. Reynolds, D. U. Hooper, S. Lavorel, O. E. Sala, S. E. Hobbie, M. C. Mack & S. Díaz, 2000. Consequences of changing biodiversity. Nature 405: 234–242.

    Article  CAS  PubMed  Google Scholar 

  • De Azevedo, F., J. D. Dias, L. D. S. M. Braghin & C. C. Bonecker, 2012. Length-weight regressions of the microcrustacean species from a tropical floodplain. Acta Limnologica Brasiliensia 24: 01–11.

    Article  Google Scholar 

  • de Melo, T. X., J. D. Dias, N. R. Simões & C. C. Bonecker, 2019. Effects of nutrient enrichment on primary and secondary productivity in a subtropical floodplain system: an experimental approach. Hydrobiologia 827: 171–181.

    Article  Google Scholar 

  • Dias, A. T. C., M. P. Berg, F. de Bello, A. R. Van Oosten, K. Bílá & M. Moretti, 2013. An experimental framework to identify community functional components driving ecosystem processes and services delivery. Journal of Ecology 101: 29–37.

    Article  Google Scholar 

  • Díaz, S. & M. Cabido, 2001. Vive la diff é rence: plant functional diversity matters to ecosystem processes. Trends in Ecology and Evolution 16: 646–655.

    Article  Google Scholar 

  • Duffy, J. E., 2009. Why biodiversity is important to the functioning of real-world ecosystems. Frontiers in Ecology and the Environment 7: 437–444.

    Article  Google Scholar 

  • Duffy, E. J., C. M. Godwin & B. J. Cardinale, 2017. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549: 261–264.

    Article  CAS  PubMed  Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and bentho of continetal waters. Oecologia 19: 75–97.

    Article  PubMed  Google Scholar 

  • Ebeling, A., S. Pompe, J. Baade, N. Eisenhauer, H. Hillebrand, R. Proulx, C. Roscher, B. Schmid, C. Wirth & W. W. Weisser, 2014. A trait-based experimental approach to understand the mechanisms underlying biodiversity–ecosystem functioning relationships. Basic and Applied Ecology 15: 229–240.

    Article  Google Scholar 

  • Edmondson, W. T., & G. G. Winberg, 1971. A manual on methods for the assessment of secondary productivity in freshwaters. IBP Handbook n.17. Blackwell Sci. Publ. Oxford and Edinburgh, Philadelphia.

  • Espíndonla, E. L. G., 1994. Dinâmica da associação congenérica das espécies de Notodiaptomus (Copepoda, Calanoida) no reservatório de Barra Bonita. Univrsidade de São Paulo, Sao Paulo.

    Google Scholar 

  • Esteves, F. A., A. Caliman, J. M. Santangelo, R. D. Guariento, V. F. Farjalla & R. L. Bozelli, 2008. Neotropical coastal lagoons: an appraisal of their biodiversity, functioning, threats and conservation management. Brazilian Journal of Biology 68: 967–981.

    Article  CAS  Google Scholar 

  • Fox, J. & S. Weisberg, 2011. An R Companion to Applied Regression, 2nd ed. Sage, Thousand Oaks.

    Google Scholar 

  • Frainer, A., B. G. McKie & B. Malmqvist, 2014. When does diversity matter? Species functional diversity and ecosystem functioning across habitats and seasons in a field experiment. Journal of Animal Ecology 83: 460–469.

    Article  PubMed  Google Scholar 

  • Garnier, E., J. Cortez, G. Billès, M. L. Navas, C. Roumet, M. Debussche, G. Laurent, A. Blanchard, D. Aubry, A. Bellmann, C. Neill & J. P. Toussaint, 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630.

    Article  Google Scholar 

  • Gaston, K., & T. Blackburn, 2008. Pattern and Process in Macroecology (Google eBook). http://books.google.com/books?hl=en&lr=&id=6VnYAlDjWzAC&pgis=1.

  • Golterman, H. L., R. S. Climo, & M. A. M. Ohnstad, 1978. Methods for Physical and Chemical Analysis of Freshwaters I.B.P. Handbook no 8. Blackwell Sci. Publ. Oxford.

  • Grime, J. P., 1998. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86: 902.

    Article  Google Scholar 

  • Gutierrez, M. F., 2018. Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes. Hydrobiologia 813: 237.

    Article  Google Scholar 

  • Gutierrez, M. F., Ü. N. Tavşanoğlu, N. Vidal, J. Yu, F. Teixeira-de Mello, A. I. Çakiroglu, H. He, Z. Liu & E. Jeppesen, 2018. Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes. Hydrobiologia 813: 237–255.

    Article  Google Scholar 

  • Hébert, M.-P., B. E. Beisner & R. Maranger, 2016. A meta-analysis of zooplankton functional traits influencing ecosystem function. Ecology 97: 1069–1080.

    Article  PubMed  Google Scholar 

  • Hillebrand, H., D. M. Bennett & M. W. Cadotte, 2008. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89: 1510.

    Article  PubMed  Google Scholar 

  • Hooper, D. U., F. S. Chapin, J. J. Ewell, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schimid, H. Setala, A. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Article  Google Scholar 

  • Hooper, D. U., E. C. Adair, B. J. Cardinale, J. E. K. Byrnes, B. A. Hungate, K. L. Matulich, A. Gonzalez, J. E. Duffy, L. Gamfeldt & M. I. O’Connor, 2012. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486: 105–108.

    Article  CAS  PubMed  Google Scholar 

  • Hulot, F. D., G. Lacroix & M. Loreau, 2000. Functional diversity governs ecosystem response to nutrient enrichment. Nature 405: 340–344.

    Article  CAS  PubMed  Google Scholar 

  • Hunter, M. L., 2017. Conserving small natural features with large ecological roles: an introduction and definition. Biological Conservation 211: 1–2.

    Article  Google Scholar 

  • Isbell, F., P. B. Reich, D. Tilman, S. E. Hobbie, S. Polasky & S. Binder, 2013. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences 110: 11911–11916.

    Article  CAS  Google Scholar 

  • Jeppesen, E., K. Christoffersen, F. Landkildehus, T. Lauridsen, S. Amsinck, F. Riget & M. Sondergaard, 2001. Fish and crustaceans in northeast Greenland lakes with special emphasis on interactions between Arctic charr (Salvelinus alpinus), Lepidurus arcticus and benthic chydorids. Hydrobiologia 442: 329–337.

    Article  Google Scholar 

  • Jeppesen, E., S. Brucet, L. N. Eva, E. Papastergiadou, K. Stefanidis, T. Ñoges, P. Ñoges, J. L. Attayde, T. Zohary, J. Coppens, T. Bucak, R. F. Menezes, F. R. S. Freitas, M. Kernan, M. Sondergaard & M. Beklioglu, 2015. Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia 750: 201–227.

    Article  Google Scholar 

  • Junk, W. J., S. An, C. M. Finlayson, B. Gopal, J. Květ, S. A. Mitchell, W. J. Mitsch & R. D. Robarts, 2013. Current state of knowledge regarding the world’s wetlands and their future under global climate change: a synthesis. Aquatic Sciences 75: 151–167.

    Article  CAS  Google Scholar 

  • Kiørboe, T., 2011. How zooplankton feed: mechanisms, traits and trade-offs. Biological Reviews 86: 311.

    Article  PubMed  Google Scholar 

  • Laliberté, E. & P. Legendre, 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91: 299–305.

    Article  PubMed  Google Scholar 

  • Lavorel, S. & E. Garnier, 2002. Predicting changes in community composition and ecosystem functioning rom plant traits: revisiting the Holy Grail. Functional Ecology 16: 545–556.

    Article  Google Scholar 

  • Lawton, J. H. & V. K. Brown, 1993. Redundancy in ecosystems. In Schulze, E.-D. & H. A. Mooney (eds), Biodiversity and Ecosystem Function. Springer, Berlin.

    Google Scholar 

  • Litchman, E., M. D. Ohman & T. Kiorboe, 2013. Trait-based approaches to zooplankton communities. Journal of Plankton Research 35: 473–484.

    Article  Google Scholar 

  • Loreau, M., 2000. Functional diversity governs ecosystem response to nutrient enrichment. Nature 405: 340–344.

    Article  PubMed  CAS  Google Scholar 

  • Loreau, M., 2010. Linking biodiversity and ecosystems: towards a unifying ecological theory. Philosophical Transactions of the Royal Society B: Biological Sciences 365: 49–60.

    Article  Google Scholar 

  • Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman & D. A. Wardle, 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science (New York, NY) 294: 804–808.

    Article  CAS  Google Scholar 

  • Machado, K. B., F. B. Teresa, L. C. G. Vieira, V. L. M. De Huszar & J. C. Nabout, 2016. Comparing the effects of landscape and local environmental variables on taxonomic and functional composition of phytoplankton communities. Journal of Plankton Research 38: 1334–1346.

    Article  Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water Analyses: Some Revised Methods for Limnologists. Freswater Ecological Association, Ambleside.

    Google Scholar 

  • Mason, N. W. H., D. Mouillot, W. G. Lee & J. B. Wilson, 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111: 112.

    Article  Google Scholar 

  • Mason, N. W. H. H., F. de Bello, D. Mouillot, S. Pavoine & S. Dray, 2013. A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. Journal of Vegetation Science 24: 794–806.

    Article  Google Scholar 

  • Massicotte, P., J.-J. Frenette, R. Proulx, B. Pinel-Alloul & A. Bertolo, 2014. Riverscape heterogeneity explains spatial variation in zooplankton functional evenness and biomass in a large river ecosystem. Landscape Ecology 29: 67–79.

    Article  Google Scholar 

  • Mouillot, D., D. R. Bellwood, C. Baraloto, J. Chave, R. Galzin, M. Harmelin-Vivien, M. Kulbicki, S. Lavergne, S. Lavorel, N. Mouquet, C. E. T. Paine, J. Renaud & W. Thuiller, 2013. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biology 11: e1001569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norberg, J., 2004. Biodiversity and ecosystem functioning: a complex adaptive systems approach. Limnology and Oceanography 49: 1269.

    Article  Google Scholar 

  • Nusch, E. A. & G. Palmer, 1975. Biologische Methoden fur die Praxis der Gewasseruntersushung. GWF-Wasser/Abwasser 116: 562–565.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, & H. Wagner, 2018. vegan: Community Ecology Package. R package version 2.5-2. CRAN R.

  • Paina, K. A. & M. D. G. G. Melão, 2019. Zooplankton community structure from tropical temporary ponds during a flood period. Limnetica 38: 189–211.

    Google Scholar 

  • Pavoine, S., J. Vallet, A.-B. Dufour, S. Gachet & H. Daniel, 2009. On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118: 391–402.

    Article  Google Scholar 

  • Petchey, O. L. & K. J. Gaston, 2002. Extinction and the loss of functional diversity. Proceedings. Biological sciences/The Royal Society 269: 1721–1727.

    Article  Google Scholar 

  • Petchey, O., A. Hector & K. Gaston, 2004. How do different measures of functional diversity perform? Ecology 85: 847–857.

    Article  Google Scholar 

  • Ressye, N., T. Xavier, D. M. Juliana & C. C. Bonecker, 2018. Effects of nutrient enrichment on primary and secondary productivity in a subtropical floodplain system: an experimental approach. Hydrobiologia 827: 171.

    Google Scholar 

  • Rietzler, A. C., 1995. Alimentação, ciclo de vida e análise da coexistência de ciclopoidas no reservatório de Barra Bonita. Universidade de São Paulo, Sao Paulo.

    Google Scholar 

  • Rizo, E. Z. C., Y. Gu, R. D. S. Papa, H. J. Dumont & B. P. Han, 2017. Identifying functional groups and ecological roles of tropical and subtropical freshwater Cladocera in Asia. Hydrobiologia 799: 83–99.

    Article  Google Scholar 

  • Roscher, C., J. Schumacher, A. Lipowsky, M. Gubsch, A. Weigelt, S. Pompe, O. Kolle, N. Buchmann, B. Schmid & E.-D. Schulze, 2013. A functional trait-based approach to understand community assembly and diversity–productivity relationships over 7 years in experimental grasslands. Perspectives in Plant Ecology, Evolution and Systematics 15: 139–149.

    Article  Google Scholar 

  • Ruttner-Kolisco, A., 1977. Suggestions for biomass calculations of plankton rotifers. Archive fu Hydrobiologie 8: 71–76.

    Google Scholar 

  • Santangelo, J. M., A. M. de Rocha, R. L. Bozelli, L. S. Carneiro & F. A. de Esteves, 2007. Zooplankton responses to sandbar opening in a tropical eutrophic coastal lagoon. Estuarine, Coastal and Shelf Science 71: 657–668.

    Article  Google Scholar 

  • Santangelo, J. M., R. L. Bozelli, A. D. M. Rocha & F. D. A. Esteves, 2008. Effects of slight salinity increases on Moina micrura (Cladocera) populations: field and laboratory observations. Marine and Freshwater Research 59: 808–816.

    Article  CAS  Google Scholar 

  • Santangelo, J. M., F. A. de Esteves, M. Manca & R. L. Bozelli, 2013. Disturbances due to increased salinity and the resilience of zooplankton communities: the potential role of the resting egg bank. Hydrobiologia 722: 103–113.

    Article  Google Scholar 

  • Setubal, R. B., J. M. Santangelo, A. D. M. Rocha & R. L. Bozelli, 2013. Effects of sandbar openings on the zooplankton community of coastal lagoons with different conservation status. Acta Limnologica Brasiliensia 25: 246–256.

    Article  Google Scholar 

  • Strayer, D. L. & D. Dudgeon, 2010. Freshwater biodiversity conservation: recent progress and future challenges. Journal of the North American Benthological Society 29: 344–358.

    Article  Google Scholar 

  • Tilman, D., 1997. The influence of functional diversity and composition on ecosystem processes. Science 277: 1300–1302.

    Article  CAS  Google Scholar 

  • Tilman, D., 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences of the United States of America 101: 10854–10861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman, D., 2013. Functional Diversity Encyclopedia of Biodiversity, 2nd ed. Academic Press, Cambridge.

    Google Scholar 

  • Tilman, D., P. B. Reich & F. Isbell, 2012. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proceedings of the National Academy of Sciences of the United States of America 109: 10394–10397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tilman, D., D. Tilman, J. Knops, D. Wedin, P. Reich, M. Ritchie & E. Siemann, 2013. The influence of functional diversity and composition on ecosystem processes. Science 277: 1300.

    Article  Google Scholar 

  • Vallina, S. M., P. Cermeno, S. Dutkiewicz, M. Loreau & J. M. Montoya, 2017. Phytoplankton functional diversity increases ecosystem productivity and stability. Ecological Modelling 361: 184–196.

    Article  Google Scholar 

  • Vidal, N., Z. Liu & E. Jeppesen, 2018. Salinity shapes zooplankton communities and functional diversity and has complex effects on size structure in lakes. Hydrobiologia 813: 237–255.

    Article  Google Scholar 

  • Villéger, S., N. W. H. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301.

    Article  PubMed  Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 1997. Human domination of earth’ s ecosystems. Science 277: 494–499.

    Article  CAS  Google Scholar 

  • Vitousek, P. M., H. A. Mooney, J. Lubchenco & J. M. Melillo, 2008. Human Domination of Earth’s Ecosystems Urban Ecology: An International Perspective on the Interaction Between Humans and Nature. Springer, New York: 3–13.

    Google Scholar 

  • Walker, B., A. Kinzig & J. Langridge, 1999. Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems 2: 95–113.

    Article  Google Scholar 

  • Wellstein, C., B. Schröder, B. Reineking & N. E. Zimmermann, 2011. Understanding species and community response to environmental change—a functional trait perspective. Agriculture, Ecosystems and Environment 145: 1–4.

    Article  Google Scholar 

  • Winberg, G. G., G. A. Pechen & E. A. Shusshkina, 1965. Production of planktonic crustaceans in three lakes of different type. Zoology Zhurnal 44: 676–687.

    Google Scholar 

  • Wisz, M. S., J. Pottier, W. D. Kissling, L. Pellissier, J. Lenoir, C. F. Damgaard, C. F. Dormann, M. C. Forchhammer, J. A. Grytnes, A. Guisan, R. K. Heikkinen, T. T. Høye, I. Kühn, M. Luoto, L. Maiorano, M. C. Nilsson, S. Normand, E. Öckinger, N. M. Schmidt, M. Termansen, A. Timmermann, D. A. Wardle, P. Aastrup & J. C. Svenning, 2013. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews 88: 15–30.

    Article  PubMed  Google Scholar 

  • Yachi, S. & M. Loreau, 1999. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proceedings of the National Academy of Sciences 96: 1463–1468.

    Article  CAS  Google Scholar 

  • Zhang, J., L. Fan & M. Li, 2012. Functional diversity in plant communities: theory and analysis methods. African Journal of Biotechnology 11: 1014–1022.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the undergraduate and graduate students who assisted during the experiment as well as all the logistical support offered by NUPEM/UFRJ. This research was financed by Conselho Nacional de Desenvolvimento Científico e Tecnológico/CNPQ, process number 422024/2016-3, and research grants to RLB by CNPq and FAPERJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rayanne Barros Setubal.

Additional information

Handling editor: Andrew Dzialowski

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 426 kb)

Supplementary material 2 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setubal, R.B., Sodré, E.O., Martins, T. et al. Effects of functional diversity and salinization on zooplankton productivity: an experimental approach. Hydrobiologia 847, 2845–2862 (2020). https://doi.org/10.1007/s10750-020-04276-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04276-0

Keywords

Navigation