Skip to main content
Log in

The role of live diatoms in bioassessment: a large-scale study of Western US streams

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Diatom-based stream bioassessment is constantly being improved to meet the increasing demands of water quality management. This study examined whether percentage of live diatoms (PLD) in periphyton communities can be used as a metric of human disturbance in streams and rivers. The analyzed dataset (587 sites) was collected over the course of 3 years (2000–2002) from 12 Western US states (US EPA’s Environmental Monitoring and Assessment Program). The mean PLD in Western streams and rivers was low (34.50%) and highly variable (range 2.08–97.02%). It did not differ significantly between the Mountains (MT, 36.38%) and the Xeric (XE, 35.49%) ecoregions, but it was significantly (P < 0.05) greater than that in the Plains ecoregion (PL, 28.27%). PLD distinguished reference from impacted sites in the MT (P < 0.05) and somewhat in the PL (P = 0.05). However, PLD exhibited opposite patterns in the two ecoregions. It increased with human disturbance in the MT and decreased in the PL due to a potential subsidy-stress gradient of available resources. The different pattern may be largely interpreted by the quality of the reference conditions in each ecoregion. In the MT ecoregion, the selected reference sites may resemble very closely the natural state in this ecoregion. In contrast, human disturbance is much more pervasive in the low-land PL ecoregion and the “reference sites” may reflect the best attainable conditions in this ecoregion. PLD as a metric has potential for monitoring human disturbance of streams, if reference sites represent natural conditions and differing responses among regions are included in expected effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acker, F., 2002. Analysis of soft-algae and enumeration of total number of diatoms in USGS NAWQA program quantitative targeted-habitat (RTH and DTH) samples. Protocol P-13-63. In Charles, D. F., C. Knowles & R. S. Davis (eds), Protocols for the Analysis of Algal Samples Collected as Part of the U.S. Geological Survey National Water-Quality Assessment Program. Report No. 02–06, Patrick Center for Environmental Research, The Academy of Natural Sciences, Philadelphia, PA: 79–86.

  • Bahls, L. L., 1993. Periphyton Bioassessment Methods for Montana Streams. Water Quality Bureau, Department of Health and Environmental Sciences, Helena, MT.

    Google Scholar 

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, 2nd ed. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

  • Biggs, B., R. J. Stevenson & R. L. Lowe, 1998. A habitat matrix conceptual model for stream periphyton. Archiv für Hydrobiologie 143: 21–56.

    Google Scholar 

  • Borchardt, M. A., 1996. Nutrients. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego, CA: 183–227.

    Chapter  Google Scholar 

  • Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.

    Article  Google Scholar 

  • Cao, Y., C. P. Hawkins, J. Olson & M. A. Kosterman, 2007. Modeling natural environmental gradients improves the accuracy and precision of diatom-based indicators. Journal of the North American Benthological Society 26: 566–584.

    Article  Google Scholar 

  • Fore, L. S., J. R. Karr & R. W. Wisseman, 1996. Assessing invertebrate responses to human activities: evaluating alternative approaches. Journal of the North American Benthological Society 15: 212–231.

    Article  Google Scholar 

  • Fretwell, S. D., 1987. Food chain dynamics: the central theory of ecology? Oikos 50: 291–301.

    Article  Google Scholar 

  • Gillett, N., Y. Pan & C. Parker, 2009. Should only live diatoms be used in the bioassessment of small mountain streams? Hydrobiologia 620: 135–147.

    Article  Google Scholar 

  • Herlihy, A. T., D. P. Larsen, S. G. Paulsen, N. S. Urquhart & B. J. Rosenbaum, 2000. Designing a spatially balanced, randomized site selection process for regional stream surveys: The EMAP Mid-Atlantic Pilot Study. Environmental Monitoring and Assessment 63: 95–113.

    Article  CAS  Google Scholar 

  • Herlihy, A., R. Hughes & J. Sifneos, 2006. Landscape clusters based on fish assemblages in the conterminous USA and their relationship to existing landscape classifications. In Hughes, R. M., L. Wang & P. W. Seelbach (eds), Landscape Influences on Stream Habitat and Biological Assemblages. American Fisheries Society Symposium 48, Bethesda, Maryland: 87–112.

  • Hill, B. H. & D. V. Peck, 2006. Periphyton. In Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee & M. Cappaert (eds), Environmental Monitoring and Assessment Program-Surface Waters: Western Pilot Study Field Operations Manual for Wadeable Streams. EPA/620/R-06/003. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC: 183–202.

  • Hoagland, K. D., S. C. Roemer & J. R. Rosowski, 1982. Colonization and community structure of two periphyton assemblages, with emphasis on the diatoms (Bacillariophyceae). American Journal of Botany 69: 188–213.

    Article  Google Scholar 

  • Johnson, R. E., N. C. Tuchman & C. G. Peterson, 1997. Changes in the vertical microdistribution of diatoms within a developing periphyton mat. Journal of the North American Benthological Society 16: 503–519.

    Article  Google Scholar 

  • Kaufmann, P. R., 2006. Physical habitat characterization. In Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee & M. Cappaert (eds), Environmental Monitoring and Assessment Program-Surface Waters: Western Pilot Study Field Operations Manual for Wadeable Streams. EPA/620/R-06/003. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC: 97–153.

  • Kaufmann, P. R., P. Levine, E. G. Robison, C. Seeliger & D. V. Peck, 1999. Quantifying Physical Habitat in Wadeable Streams. EPA/620/R-99/003. U.S. Environmental Protection Agency, Washington, DC.

  • Kelly, M. G. & B. A. Whitton, 1995. Trophic diatom index—a new index for monitoring eutrophication in rivers. Journal of Applied Phycology 7: 433–444.

    Article  Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1986, 1988, 1991a, b. Bacillariophyceae. 1–4 Teil: Süsswasserflora von Mitteleuropa. Gustav Fisher Verlag, Stuttgart, Germany

  • Lamberti, G. A., 1996. The role of periphyton in benthic food webs. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego, CA: 533–573.

    Chapter  Google Scholar 

  • Lamberti, G. A., S. V. Gregory, L. R. Ashkenas, A. D. Steinman & C. D. McIntire, 1989. Productive capacity of periphyton as a determinant of plant–herbivore interactions in streams. Ecology 70: 1840–1856.

    Article  Google Scholar 

  • Lange-Bertalot, H., 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia 64: 285–303.

    Google Scholar 

  • McCormick, P. V. & R. J. Stevenson, 1991. Mechanisms of benthic algal succession in lotic environments. Ecology 72: 1835–1848.

    Article  Google Scholar 

  • Mulholland, P. J., A. D. Steinman, A. V. Palumbo, D. L. DeAngelis & T. E. Flum, 1991. Influence of nutrients and grazing on the response of stream periphyton communities to a scour disturbance. Journal of the North American Benthological Society 10: 127–142.

    Article  Google Scholar 

  • Naymik, J., Y. Pan & J. Ford, 2005. Diatom assemblages as indicators of timber harvest effects in coastal Oregon streams. Journal of the North American Benthological Society 24: 569–584.

    Google Scholar 

  • Odum, E. P., J. T. Finn & E. H. Franz, 1979. Perturbation theory and the subsidy-stress gradient. Bioscience 29: 349–352.

    Article  Google Scholar 

  • Omernik, J. M., 1987. Ecoregions of the conterminous United States (map supplement). Annals of the Association of American Geographers 77: 118–125.

    Article  Google Scholar 

  • Pan, Y., R. J. Stevenson, B. H. Hill, P. R. Kaufmann & A. T. Herlihy, 1999. Spatial patterns and ecological determinants of benthic algal assemblages in Mid-Atlantic streams, USA. Journal of Phycology 35: 460–468.

    Article  Google Scholar 

  • Pan, Y. D., R. J. Stevenson, B. H. Hill & A. T. Herlihy, 2000. Ecoregions and benthic diatom assemblages in Mid-Atlantic Highlands streams, USA. Journal of the North American Benthological Society 19: 518–540.

    Article  Google Scholar 

  • Patrick, R. & C. W. Reimer, 1966, 1975. The Diatoms of the United States, Vol. 1, 2. Monograph #13 of the Academy of Natural Sciences of Philadelphia.

  • Peck, D. V., D. K. Averill, A. T. Herlihy, R. M. Hughes, P. R. Kaufmann, D. J. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, M. R. Cappaert, T. Magee & P. A. Monaco, 2005. Environmental Monitoring and Assessment Program-Surface Waters: Western Pilot Study Field Operations Manual for Non-Wadeable Rivers and Streams. EPA/620/R-05/xxx. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC.

  • Peck, D. V., A. T. Herlihy, B. H. Hill, R. M. Hughes, P. R. Kaufmann, D. Klemm, J. M. Lazorchak, F. H. McCormick, S. A. Peterson, P. L. Ringold, T. Magee & M. Cappaert, 2006. Environmental Monitoring and Assessment Program-Surface Waters: Western Pilot Study Field Operations Manual for Wadeable Streams. EPA/620/R-06/003. Office of Research and Development, U.S. Environmental Protection Agency, Washington, DC.

  • Peterson, C. G., 1987. Gut passage and insect grazer selectivity of lotic diatoms. Freshwater Biology 18: 455–460.

    Article  Google Scholar 

  • Peterson, C. G., 1996. Mechanisms of lotic microalgal colonization following space-clearing disturbances acting at different spatial scales. Oikos 77: 417–435.

    Article  Google Scholar 

  • Peterson, C. G., M. A. Horton, M. C. Marshall, H. M. Valett & C. N. Dahm, 2001. Spatial and temporal variation in the influence of grazing macroinvertebrates on epilithic algae in a montane stream. Archiv für Hydrobiologie 153: 29–54.

    Google Scholar 

  • Potapova, M. G. & D. F. Charles, 2002. Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. Journal of Biogeography 29: 167–187.

    Article  Google Scholar 

  • Potapova, M. & D. F. Charles, 2007. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators 7: 48–70.

    Article  Google Scholar 

  • Pryfogle, P. A. & R. L. Lowe, 1979. Sampling and interpretation of epilithic lotic diatom communities. In Wetzel, R. L. (ed.), Methods and Measurements of Periphyton Communities: A Review. American Society for Testing and Materials, STP 690: 77–89.

  • R Development Core Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna [available on internet at http://www.R-project.org].

  • Steinman, A. D., 1996. Effects of grazers on freshwater benthic algae. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego, CA: 341–373.

    Chapter  Google Scholar 

  • Steinman, A. D. & C. D. McIntire, 1986. Effects of current velocity and light energy on the structure of periphyton assemblages in laboratory streams. Journal of Phycology 22: 352–361.

    Article  Google Scholar 

  • Steinman, A. D. & C. D. McIntire, 1990. Recovery of lotic periphyton communities after disturbance. Environmental Management 14: 589–604.

    Article  Google Scholar 

  • Steinman, A. D., C. D. McIntire, S. V. Gregory & G. A. Lamberti, 1989. Effects of irradiance and grazing on lotic algal assemblages. Journal of Phycology 25: 478–485.

    Article  Google Scholar 

  • Steinman, A. D., P. J. Mulholland, A. V. Palumbo & T. F. Flum, 1991. Resilience of lotic ecosystems to a light-elimination disturbance. Ecology 72: 1299–1313.

    Article  Google Scholar 

  • Stevenson, R. J., 1997. Scale-dependent determinants and consequences of benthic algal heterogeneity. Journal of the North American Benthological Society 16: 248–262.

    Article  Google Scholar 

  • Stevenson, R. J. & L. Bahls, 1999. Periphyton protocols. In Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling (eds), Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, 2nd ed. EPA 841-B-99-002. US Environmental Protection Agency, Office of Water, Washington, DC: 61–622.

  • Stevenson, R. J. & Y. Pan, 1999. Assessing environmental conditions in rivers and streams with diatoms. In Stoermer, E. F. & J. P. Smol (eds), The Diatoms: Applications for the Environmental and Earth Sciences, 1st ed. Cambridge University Press, Cambridge: 11–40.

    Google Scholar 

  • Stevenson, R. J. & S. Sabater, 2010. Understanding effects of global change on river ecosystems: science to support policy in a changing world. Hydrobiologia 657: 3–18.

    Article  Google Scholar 

  • Stevenson, R. J., C. G. Peterson, D. B. Kirschtel, C. C. King & N. C. Tuchman, 1991. Density-dependent growth, ecological strategies, and effects of nutrients and shading on benthic diatom succession in streams. Journal of Phycology 27: 59–69.

    Article  Google Scholar 

  • Stevenson, R. J., Y. Pan & H. Van Dam, 2010. Assessing environmental conditions in rivers and streams with diatoms. In Smol, J. P. & E. F. Stoermer (eds), The Diatoms: Applications for the Environmental and Earth Sciences, 2nd ed. Cambridge University Press, Cambridge: 57–85.

    Google Scholar 

  • Stoddard, J. L., D. P. Larsen, C. P. Hawkins, R. K. Johnson & R. H. Norris, 2006. Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications 16: 1267–1276.

    Article  PubMed  Google Scholar 

  • Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union 38: 913–920.

    Google Scholar 

  • US EPA, 1987. Handbook of Methods for Acid Deposition Studies, Laboratory Analysis for Surface Water Chemistry. EPA-600-4-87-026. US Environmental Protection Agency, Washington, DC.

  • US EPA, 1996. Level III Ecoregions of the Continental United States (Revision of Omernik, 1987) Map M-1 (Various Scales). Corvallis, Oregon.

  • Vadas, R. L., 1990. The importance of omnivory and predator regulation of prey in freshwater fish assemblages of North America. Environmental Biology of Fishes 27: 285–302.

    Article  Google Scholar 

  • Wang, Y. K., R. J. Stevenson & L. Metzmeier, 2005. Development and evaluation of a diatom-based index of biotic integrity for the Interior Plateau Ecoregion, USA. Journal of the North American Benthological Society 24: 990–1008.

    Article  Google Scholar 

  • Whittier, T. R., R. M. Hughes & D. Larsen, 1988. Correspondence between ecoregions and spatial patterns in stream ecosystems in Oregon. Canadian Journal of Fisheries and Aquatic Sciences 45: 1264–1278.

    Google Scholar 

  • Whittier, T. R., J. L. Stoddard, R. M. Hughes & G. A. Lomnicky, 2006. Associations among catchment- and site-scale disturbance indicators and biological assemblages at least- and most-disturbed stream and river sites in the Western United States. In Hughes, R. M., L. Wang & P. W. Seelbach (eds), Landscape Influences on Stream Habitats and Biological Assemblages. American Fisheries Society, Symposium 48. Bethesda, Maryland: 641–664.

  • Wilson, C. J. & R. W. Holmes, 1981. The ecological importance of distinguishing between living and dead diatoms in estuarine sediments. European Journal of Phycology 16: 345–349.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Chris Parker, Patrick Edwards, Jeff Meacham, and Hsiao-Hsuan Lin for their valuable inputs on earlier drafts of this article. We express additional gratitude to all people involved with the WEMAP, especially to Phil Larsen, Alan Herlihy, Phil Kaufmann, and Dave Peck. We would also like to thank Alan Steinman, Peeter Nõges, Martyn Kelly, and an anonymous reviewer for critical reviews and helpful comments on the manuscript. Funding for this project was provided by the US EPA-PSU cooperative agreement for the WEMAP periphyton analysis (EPA R-82902601-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezhda D. Gillett.

Additional information

Handling editor: P. Noges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gillett, N.D., Pan, Y., Manoylov, K.M. et al. The role of live diatoms in bioassessment: a large-scale study of Western US streams. Hydrobiologia 665, 79–92 (2011). https://doi.org/10.1007/s10750-011-0606-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0606-7

Keywords

Navigation