Skip to main content
Log in

Purple Matter, Membranes and ‘Molecular Pumps’ in Rhodopsin Research (1960s–1980s)

  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Abstract

In the context of 1960s research on biological membranes, scientists stumbled upon a curiously coloured material substance, which became called the “purple membrane.” Interactions with the material as well as chemical analyses led to the conclusion that the microbial membrane contained a photoactive molecule similar to rhodopsin, the light receptor of animals’ retinae. Until 1975, the find led to the formation of novel objects in science, and subsequently to the development of a field in the molecular life sciences that comprised biophysics, bioenergetics as well as membrane and structural biology. Furthermore, the purple membrane and bacteriorhodopsin, as the photoactive membrane transport protein was baptized, inspired attempts at hybrid bio-optical engineering throughout the 1980s. A central motif of the research field was the identification of a functional biological structure, such as a membrane, with a reactive material substance that could be easily prepared and manipulated. Building on this premise, early purple membrane research will be taken as a case in point to understand the appearance and transformation of objects in science through work with material substances. Here, the role played by a perceptible material and its spontaneous change of colour, or reactivity, casts a different light on objects and experimental practices in the late twentieth century molecular life sciences. With respect to the impact of chemical working and thinking, the purple membrane and rhodopsins represent an influential domain straddling the life and chemical sciences as well as bio- and material technologies, which has received only little historical and philosophical attention. Re-drawing the boundary between the living and the non-enlivened, these researches explain and model organismic activity through the reactivity of macromolecular structures, and thus palpable material substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

 

Interviews

  • Chance, Britton. Interview with Sally S. Hughes, Chemical Heritage Foundation, Philadelphia, 1999

  • Oesterhelt, Dieter. Interview with author, Martinsried, 22.1.2009

Archival Sources

  • Papers of Max Delbrück. Archives, California Institute of Technology, Pasadena.

  • Research notes of Dieter Oesterhelt. Folders labelled “Dortmund”, “München/Tübingen”, “Protonenversuche/Bleichungen”, “Publikationen D. Oesterhelt” and “San Francisco 1969/70” were analyzed at the Max Planck Institute of Biochemistry, Martinsried. Dieter Oesterhelt’s papers will be deposited in the Archives of the Max Planck Society, Berlin.

References

  • Allchin, Douglas. 1996. “Cellular and Theoretical Chimeras: Piecing Together How Cells Process Energy.” Studies in History and Philosophy of Science, Part A 27: 31–41.

    Article  Google Scholar 

  • Barnes, Barry. 1987. The Nature of Power. Cambridge: Polity Press.

    Google Scholar 

  • Bechtel, William. 2006. Discovering Cell Mechanisms: The Creation of Modern Cell Biology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Beecken, H., Gottschalk, E.-M., von Gizycki, U., Krämer, H., Maassen, D., Matthies, H.-G., Musso, H., Rathjen, C., and Zahorszky, U.I. 2003. “Orcein and Litmus.”Biotechnic and Histochemistry 78: 289–302. (Translation of a 1961 paper from Angewandte Chemie).

    Article  Google Scholar 

  • Bensaude-Vincent, Bernadette. 2005. Faut-il avoir peur de la chimie?. Paris: Les empêcheurs de penser en rond.

    Google Scholar 

  • Blaurock, Allen E. 1972. “The Purple Eye of a Bacterium.” The New Scientist 53: 538–539.

    Google Scholar 

  • Blaurock, Allen E. 1982. “Analysis of Bacteriorhodopsin Structure by X-Ray Diffraction.” Lester Packer (ed.), Biomembranes Part I: Visual Pigments and Purple Membranes II (= Methods in Enzymology), Vol. 88. New York: Academic Press, pp. 124–132.

  • Blaurock, Allen E. and Walther Stoeckenius. 1971. “Structure of the Purple Membrane.” Nature New Biology 233: 152–155.

    Article  Google Scholar 

  • Brody, J.E. 1977. A Strange Bacteria’s Purple Pigment, Which Uses Light to Generate Energy, may Yield Scientific Goldmine. New York Times, 5 July 1977, p. 17.

  • Brown, A.D. 1990. Microbial Water Stress Physiology. Principles and Perspectives. Chichester: Wiley.

    Google Scholar 

  • Brown, A.D. and C.D. Shorey. 1963. “The Cell Envelopes of Two Extremely Halophilic Bacteria.” The Journal of Cell Biology 18: 681–689.

    Article  Google Scholar 

  • Bud, Robert. 2010. “From Applied Microbiology to Biotechnology: Science, Medicine and Industrial Renewal.” Notes and Records of the Royal Society 64: S17–S29.

    Article  Google Scholar 

  • Creager, Angela N.H. 2002. The Life of a Virus. Tobacco Mosaic Virus as an Experimental Model, 1930–1965. Chicago/London: The University of Chicago Press.

    Google Scholar 

  • Creager, Angela N.H. 2008. “Anfinsen, Christian B.” The New Dictionary of Scientific Biography. Detroit: Scribners, pp. 76–82.

  • Creager, Angela N.H., Gregory J. Morgan. 2008. “After the Double Helix.” Isis 99: 239–272.

    Article  Google Scholar 

  • de Chadarevian, Soraya. 2002. Designs for Life: Molecular Biology After World War II. Cambridge: Cambridge University Press.

    Google Scholar 

  • Elkana, Yehuda. 1970. “Helmholtz’ “Kraft”: An Illustration of Concepts in Flux.” Historical Studies in the Physical Sciences 2: 263–298.

    Article  Google Scholar 

  • Fleck, Ludwik. 1980. Entstehung und Entwicklung einer wissenschaftlichen Tatsache. Frankfurt: Suhrkamp.

    Google Scholar 

  • Fox Keller, Evelyn. 2009. Self-Organization, Self-Assembly, and the Inherent Activity of Matter. The Hans Rausing Lecture 2009. Uppsala: Uppsala Universitet.

    Google Scholar 

  • Fox Keller, Evelyn. 2011. “Towards a Science of Informed Matter.” Studies in History and Philosophy of Science, Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42: 174–179.

    Article  Google Scholar 

  • Garfield, Eugene. 2004. “Historiographic Mapping of Knowledge Domains Literature.” Journal of Information Science 30: 119–145.

    Article  Google Scholar 

  • Graham, Loren R. 1993. Science in Russia and the Soviet Union: A Short History. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gratzer, Walther. 2009. Giant Molecules. From Nylon to Nanotubes. Oxford: Oxford University Press.

    Google Scholar 

  • Grote, Mathias. 2010. “Surfaces of Action: Cells and Membranes in Electrochemistry and the Life Sciences.” Studies in History and Philosophy of Science, Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 41: 183–193.

    Article  Google Scholar 

  • Grote, Mathias and Maureen A. O’Malley. 2011. “Enlightening the Lifesciences. The History of Halobacterial and Microbial Rhodopsin Research.” FEMS Microbiology Reviews 35: 1082–1099.

    Article  Google Scholar 

  • Hargittai, Istvan. 2002. “Richard Henderson [Interview].” Istvan Hargittai and Magdolna Hargittai (eds.), Candid Science II: Conversations with Famous Biomedical Scientists. London: Imperial College Press, pp. 297–305.

  • Henderson, Richard. 1977. “The Purple Membrane from Halobacterium halobium.” Annual Reviews of Biophysics and Bioengineering 6: 87–109.

    Article  Google Scholar 

  • Henderson, Richard and P. Nigel T. Unwin. 1975. “Three-Dimensional Model of the Purple Membrane Obtained by Electron Microscopy.” Nature 257: 28–32.

    Article  Google Scholar 

  • Jagendorf, André Tridon and Ernest Uribe. 1966. “ATP Formation Caused by Acid-Base Transition of Spinach Chloroplasts.” Proceedings of the National Academy of Sciences USA 55: 170–177.

    Article  Google Scholar 

  • Jardetzky, Oleg. 1966. “Simple Model for Allosteric Membrane Pumps.” Nature 211: 969–970.

    Article  Google Scholar 

  • Khorana, Har Gobind (ed.). 2000. Chemical Biology. Selected Papers by Har Gobind Khorana with Introductions. Singapore: World Scientific Publishing.

    Google Scholar 

  • Klein, Ursula and Wolfgang Lefèvre. 2007. Materials in Eighteenth-Century Science. A Historical Ontology. Cambridge, MA, London: The MIT Press.

    Google Scholar 

  • Kohler, Robert E. 1973. “The Enzyme Theory and the Origin of Biochemistry.” Isis 642: 181–196.

    Article  Google Scholar 

  • Lefkowitz, Robert J. 2004. “Historical Review: A Brief History and Personal Retrospective of Seven-Transmembrane Receptors.” Trends in Pharmacological Sciences 25: 413–422.

    Article  Google Scholar 

  • Levina, Elena S. 2008. “Ovchinnikov, Yury Anatolyevich.” Complete Dictionary of Scientific Biography. Detroit: Scribners, pp. 359–365 [online resource].

  • Morton, R.A. and G.A.J. Pitt. 1957. “Visual Pigments.” Fortschritte der Chemie organischer Naturstoffe 14: 244–316.

    Google Scholar 

  • Moss, Lenny. 2004. What Genes Can’t do. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Oesterhelt, Dieter. 1972. “Die Purpurmembran aus Halobacterium halobium.” Hoppe Seyler’s Zeitschrift für physiologische Chemie 353: 1554–1555.

    Google Scholar 

  • Oesterhelt, Dieter and Benno Hess. 1973. “Reversible Photolysis of the Purple Complex in the Purple Membrane of Halobacterium halobium.” European Journal of Biochemistry 37: 316–326.

    Article  Google Scholar 

  • Oesterhelt, Dieter and Norbert A. Hampp. 2004. “Bacteriorhodopsin and Its Potential Technological Applications.” Christof Niemeyer and Chad A. Mirkin (eds.), Nanobiotechnology: Concepts, Applications and Practices. Weinheim: Wiley-VCH, pp. 146–167.

    Google Scholar 

  • Oesterhelt, Dieter and Walther Stoeckenius. 1971. “Rhodopsin-Like Protein from the Purple Membrane of Halobacterium halobium.” Nature New Biology 233: 149–152.

    Article  Google Scholar 

  • Oesterhelt, Dieter and Walther Stoeckenius. 1973. “Functions of a New Photoreceptor Membrane.” Proceedings of the National Academy of Sciences USA 70: 2853–2857.

    Article  Google Scholar 

  • Oesterhelt, Dieter, Christoph Bräuchle and Norbert A. Hampp. 1991. “Bacteriorhodopsin: A Biological Material for Information Processing.” Quarterly Reviews of Biophysics 2404: 425–478.

    Article  Google Scholar 

  • Ovchinnikov, Yuri A., N.G. Abdulaev, M.Yu. Feigina, A.V. Kiselev, and N.A. Lobanov. 1979. “The Structural Basis of the Functioning of Bacteriorhodopsin: An Overview.” FEBS Letters 100: 219–224.

    Article  Google Scholar 

  • Otis, Laura. 2000. Membranes: Metaphors of Invasion in Nineteenth-Century Literature, Science, and Politics. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Pardee, Arthur B. 1968. “Membrane Transport Proteins.” Science 162: 632–637.

    Article  Google Scholar 

  • Partington, James R.R. 1969 [1961]. A History of Chemistry, Vol. 2. London: Macmillan.

  • Racker, Efraim and Walther Stoeckenius. 1974. “Reconstitution of Purple Membrane Vesicles Catalyzing Light-Driven Proton Uptake and Adenosine Triphosphate Formation.” Journal of Biological Chemistry 249: 662–663.

    Google Scholar 

  • Rasmussen, Nicolas. 1997. Picture Control. The Electron Microscope and the Transformation of Biology in America, 1940–1960. Stanford: Stanford University Press.

    Google Scholar 

  • Reinhardt, Carsten. 2006. Shifting and Rearranging. Physical Methods and the Transformation of Modern Chemistry. Sagamore Beach: Science History Publications.

    Google Scholar 

  • Rheinberger, Hans-Jörg. 1997. Towards a History of Epistemic Things. Synthesizing Proteins in the Test Tube. Stanford: Stanford University Press.

    Google Scholar 

  • Robinson, Joseph D. 1997. Moving Questions. A History of Membrane Transport and Bioenergetics. Oxford, New York: Oxford University Press.

    Google Scholar 

  • Schummer, Joachim. 2008. “Matter Versus Form, and Beyond.” Klaus Ruthenberg and Jaap van Brakel (eds.), Stuff. The Nature of Chemical Substances. Würzburg: Königshausen & Neumann, pp. 3–20.

    Google Scholar 

  • Soentgen, Jens. 2008. “Stuff. A Phenomenological Definition.” Klaus Ruthenberg and Jaap van Brakel (eds.), Stuff. The Nature of Chemical Substances. Würzburg: Königshausen & Neumann, pp. 71–92.

    Google Scholar 

  • Stadler, Max. 2009. Assembling Life. Models, the Cell, and the Reformations of Biological Science, 19201960. Ph.D. dissertation, University of London.

  • Stoeckenius, Walther. 1994. “From Membrane Structure to Bacteriorhodopsin.” Journal of Membrane Biology 139: 139–148.

    Google Scholar 

  • Stoeckenius, Walther and Don M. Engelman. 1969. “Current Models for the Structure of Biological Membranes.” Journal of Cell Biology 42: 613–646.

    Article  Google Scholar 

  • Stoeckenius, Walther and Wolf-H. Kunau. 1968. “Further Characterization of Particulate Fractions from Lysed Cell Envelopes of Halobacterium halobium and Isolation of Gas Vacuole Membranes.” Journal of Cell Biology 38: 337–357.

    Article  Google Scholar 

  • Stoeckenius, Walther, Richard H. Lozier and Roberto A. Bogomolni. 1979. “Bacteriorhodopsin and the Purple Membrane of Halobacteria.” Biochimica Biophysica Acta Reviews Bioenergetics 505: 215–278.

    Article  Google Scholar 

  • Stoeckenius, Walther and Rowen Robert. 1967. “A Morphological Study of Halobacterium halobium and Its Lysis in Media of Low Salt Concentration.” Journal of Cell Biology 34: 365–393.

    Article  Google Scholar 

  • Tanford, Charles and Jaqueline Reynolds. 2001. Nature’s Robots. A History of Proteins. Oxford, New York: Oxford University Press.

    Google Scholar 

  • Unwin, P. Nigel T. and Richard Henderson. 1975. “Molecular Structure Determination by Electron Microscopy of Unstained Crystalline Specimens.” Journal of Molecular Biology 943, 425–432.

    Google Scholar 

  • Unwin, P. Nigel T. and Richard Henderson. 1984. “The Structure of Proteins in Biological Membranes.” Scientific American 250: 78–94.

    Google Scholar 

  • Vsevolodov, Nikolai N. 1998. Biomolecular Electronics: An Introduction Via Photosensitive Proteins. Boston: Birkhäuser.

    Google Scholar 

  • Wald, George. 1968. “The Molecular Basis of Visual Excitation.” Nature 219: 800–807.

    Article  Google Scholar 

  • Weber, Marcel. 2002. “Theory Testing in Experimental Biology: The Chemiosmotic Mechanism of ATP Synthesis.” Studies in History and Philosophy of Science, Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 33: 29–52.

    Article  Google Scholar 

  • Werner, Petra. 1998. Vitamine als Mythos. Dokumente zur Geschichte der Vitaminforschung. Berlin: Akademie Verlag.

    Google Scholar 

  • Will, Heike. 2011. Sei naiv und mach’ ein Experiment. Feodor Lynen. Biographie des Münchner Biochemikers und Nobelpreisträgers. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Wilkins, Maurice. 2003. The Third Man of the Double Helix. Autobiography of Maurice Wilkins. Oxford: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Grote.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grote, M. Purple Matter, Membranes and ‘Molecular Pumps’ in Rhodopsin Research (1960s–1980s). J Hist Biol 46, 331–368 (2013). https://doi.org/10.1007/s10739-012-9333-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10739-012-9333-9

Keywords

Navigation