Skip to main content

Advertisement

Log in

Collecting, Comparing, and Computing Sequences: The Making of Margaret O. Dayhoff’s Atlas of Protein Sequence and Structure, 1954–1965

  • Published:
Journal of the History of Biology Aims and scope Submit manuscript

Abstract

Collecting, comparing, and computing molecular sequences are among the most prevalent practices in contemporary biological research. They represent a specific way of producing knowledge. This paper explores the historical development of these practices, focusing on the work of Margaret O. Dayhoff, Richard V. Eck, and Robert S. Ledley, who produced the first computer-based collection of protein sequences, published in book format in 1965 as the Atlas of Protein Sequence and Structure. While these practices are generally associated with the rise of molecular evolution in the 1960s, this paper shows that they grew out of research agendas from the previous decade, including the biochemical investigation of the relations between the structures and function of proteins and the theoretical attempt to decipher the genetic code. It also shows how computers became essential for the handling and analysis of sequence data. Finally, this paper reflects on the relationships between experimenting and collecting as two distinct “ways of knowing” that were essential for the transformation of the life sciences in the twentieth century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abir-Am, Pnina. 1992. ‘The Politics of Macromolecules Molecular Biologists, Biochemists, and Rethoric.’ Osiris 7: 164–191.

    Article  Google Scholar 

  • Allen, Garland E. 1978. Life Science in the Twentieth Century. Cambridge/London:Cambridge University Press.

    Google Scholar 

  • Anfinsen, Christian B. 1959. The Molecular Basis of Evolution. New York:Wiley.

    Google Scholar 

  • Anfinsen, Christian B, Åqvist, Stig EV, Cooke, Juanita P, Jönsson, Börje. 1959. ‘A Comparative Study of the Structures of Bovine and Ovine Pancreatic Ribonucleases.’ Journal of Biological Chemistry 234(5): 1118–1123.

    Google Scholar 

  • Anonymous. 1962. ‘Computing in the University.’ Datamation 8: 27–30.

    Google Scholar 

  • Aronson, Jay D. 2002. ‘‘Molecules and Monkeys’: George Gaylord Simpson and the Challenge of Molecular Evolution.’ History Philosophy of Life Sciences 24(3–4): 441–465.

    Article  Google Scholar 

  • Aspray, William, Williams, Bernard O. 1994. ‘Arming American Scientists – NSF and the Provision of Scientific Computing Facilities for Universities, 1950–1973.’ IEEE Annals of the History of Computing 16(4): 60–74.

    Article  Google Scholar 

  • Baldwin, Ernest. 1937. An Introduction to Comparative Biochemistry. Cambridge:The University Press.

    Google Scholar 

  • Baldwin, Ernest. 1966. An Introduction to Comparative Biochemistry. Cambridge:The University Press.

    Google Scholar 

  • Basilio, Carlos, Wahba, Albert J, Lengyel, Peter, Speyer, Joseph F, Ochoa, Severo. 1962. ‘Synthetic Polynucleotides and the Amino Acid Code. V.’ Proceedings National Academy Science 48: 613–616.

    Article  Google Scholar 

  • Benson, Keith R. 1988. ‘From Museum Research to Laboratory Research: The Transformation of Natural History into Academic Biology.’ Ronald Rainger, Keith R Benson, Jane Maienschein (eds.), The American Development of Biology. Philadelphia:University of Pennsylvania Press.

    Google Scholar 

  • Bernhard, SA, Bradley, DF, Duda, WL. 1963. ‘Automatic Determination of Amino Acid Sequences.’ IBM Journal of Research and Development 7(3): 246–251.

    Article  Google Scholar 

  • Blombäck, Birger, Blombäck, Margareta, Grondahl, Nils Jakob. 1965. ‘Studies on Fibrinopeptides from Mammals.’ Acta Chemica Scandinavica 19: 1789–1791.

    Article  Google Scholar 

  • Bowler, Peter J, Morus, Iwan Rhys. 2005. Making Modern Science: A Historical Survey. Chicago:University Of Chicago Press.

    Google Scholar 

  • Brandt, Christina. 2004. Metapher und Experiment: von der Virusforschung zum genetischen Code. Göttingen:Wallstein.

    Google Scholar 

  • Brenner, Sydney. 1957. ‘On the Impossibility of All Overlapping Triplet Codes in Information Transfer from Nucleic Acid to Proteins.’ Proceedings National Academy Science 43(8): 687–694.

    Article  Google Scholar 

  • Brown, H, Sanger, Frederick, Kitai, Ruth. 1955. ‘The Structure of Pig and Sheep Insulins.’ Biochemical Journal 60(1–4): 556–565.

    Google Scholar 

  • Chargaff, Erwin. 1955. ‘Isolation and Composition of the Desoxypentose Nucleic Acids and of the Corresponding Nucleoproteins.’ Erwin Chargaff, JN Davidson (eds.), The Nucleic Acids: Chemistry and Biology. New York:Academic Press.

    Google Scholar 

  • Coleman, William. 1971. Biology in the Nineteenth Century: Problems of Form, Function and Transformation. Cambridge:Cambridge University Press.

    Google Scholar 

  • Creager, Angela NH. 2002. The Life of a Virus: Tobacco Mosaic Virus as an Experimental Model, 1930–1965. Chicago:University of Chicago Press.

    Google Scholar 

  • Dayhoff, Margaret O. 1964. ‘Computer Search for Active Site Configurations.’ Journal of the American Chemical Society 86(11): 2295–2297.

    Article  Google Scholar 

  • Dayhoff, Margaret O. 1969. ‘Computer Analysis of Protein Evolution.’ Scientific American 221: 86–95.

    Article  Google Scholar 

  • Dayhoff, Margaret O. and Ledley, Robert S. 1962. “Comprotein: A Computer Program to Aid Primary Protein Structure Determination.” Proceedings of the Fall Joint Computer Conference. Santa Monica: American Federation of Information Processing Societies.

  • Dayhoff, Margaret O, Lippincott, ER, Eck, Richard V. 1964. ‘Thermodynamic Equilibria in Prebiological Atmospheres.’ Science 146: 1461–1464.

    Article  Google Scholar 

  • Dayhoff, Margaret O, Eck, Richard V, Chang, Marie A, Sochard, Minnie R. 1965. Atlas of Protein Sequence and Structure. Silver Spring:National Biomedical Research Foundation.

    Google Scholar 

  • Dayhoff, Margaret O, Eck, Richard V, Lippincott, ER, Sagan, Carl. 1967. ‘Venus: Atmospheric Evolution.’ Science 155(3762): 556–558.

    Article  Google Scholar 

  • de Chadarevian, Soraya. 1996. ‘Sequences, Conformation, Information: Biochemists and Molecular Biologists in the 1950s.’ Journal of the History of Biology 29(3): 361–386.

    Article  Google Scholar 

  • de Chadarevian, Soraya. 1998. ‘Following Molecules: Haemoglobin Between the Clinic and the Laboratory.’ Soraya de Chadarevian, Kamminga Harmke (eds.), Molecularizing Biology and Medicine: New Practices and Alliances, 1910s–1970s. Amsterdam:Harwood Academic Publishers.

    Chapter  Google Scholar 

  • de Chadarevian, Soraya. 1999. ‘Protein Sequencing and the Making of Molecular Genetics.’ Trends in Biochemical Sciences 24: 203–206.

    Article  Google Scholar 

  • de Chadarevian, Soraya. 2002. Designs for Life. Molecular Biology after World War II. Cambridge:Cambridge University Press.

    Google Scholar 

  • de Solla Price, Derek J. 1963. Little Science, Big Science. New York:Columbia University Press.

    Google Scholar 

  • Dietrich, Michael R. 1994. ‘The Origins of the Neutral Theory of Molecular Evolution.’ Journal of the History of Biology 27: 21–59.

    Article  Google Scholar 

  • Dietrich, Michael R. 1998. ‘Paradox and Persuasion: Negotiating the Place of Molecular Evolution Within Evolutionary Biology.’ Journal of the History of Biology 31: 85–111.

    Article  Google Scholar 

  • Doolittle, Russell F, Blombäck, Birger. 1964. ‘Amino-Acid Sequence Investigations of Fibrinopeptides from Various Mammals: Evolutionary Implications.’ Nature 202: 147–152.

    Article  Google Scholar 

  • Doolittle, Russell F, Singer, Seymour J, Metzger, Henry. 1966. ‘Evolution of Immunoglobulin Polypeptide Chains: Carboxy-Terminal of an IgM Heavy Chain.’ Science 154(756): 1561–1562.

    Article  Google Scholar 

  • Eck, Richard V. 1961. ‘Non-Randomness in Amino-Acid ‘Alleles’.’ Nature 191: 1284–1285.

    Article  Google Scholar 

  • Eck, Richard V. 1962a. ‘A Simplified Strategy for Sequence Analysis of Large Proteins.’ Nature 193: 241–243.

    Article  Google Scholar 

  • Eck, Richard V. 1962b. ‘I. The Protein Cryptogram: I Non-Random Occurrence of Amino Acid “Alleles”.’ Journal of Theoretical Biology 2: 139–151.

    Article  Google Scholar 

  • Eck, Richard V. 1964. “Cryptogrammic Detection of a Pattern in Amino Acid “Alleles”: Its Use in Tracing the Evolution of Proteins.” Proceedings on the 17th Annual Conference on Engineering in Medicine and Biology, Vol. 6, p. 115.

  • Eck, Richard V, Dayhoff, MO. 1966a. ‘Evolution of the Structure of Ferredoxin Based on Living Relics of Primitive Amino Acid Sequences.’ Science 152(3720): 363–366.

    Article  Google Scholar 

  • Eck, Richard V, Dayhoff, Margaret O. 1966b. Atlas of Protein Sequence and Structure. Silver Spring, MD:National Biomedical Research Foundation.

    Google Scholar 

  • Edwards, Paul N. 1996. The Closed World: Computers and the Politics of Discourse in Cold War America. Cambridge, MA:MIT Press.

    Google Scholar 

  • Elzen, Boelie. 1986. ‘Two Ultracentrifuges: A Comparative Study of the Social Construction of Artefacts.’ Social Studies of Science 16: 621–662.

    Article  Google Scholar 

  • Endersby, Jim. 2007. A Guinea Pig’s History of Biology. Cambridge:Harvard University Press.

    Google Scholar 

  • Farber, Paul Lawrence. 2000. Finding Order in Nature: The Naturalist Tradition from Linnaeus to E. O. Wilson. Baltimore/London:The Johns Hopkins University Press.

    Google Scholar 

  • Felsenstein, Joseph. 2004. Inferring Phylogenies. Sunderland, MA; Sinauer Associates

  • Fitch, Walter M. 1964. ‘The Probable Sequence of Nucleotides in Some Codons.’ Proceedings National Academy Science 52: 298–305.

    Article  Google Scholar 

  • Fitch, Walter M. 1966a. ‘Evidence Suggesting a Partial, Internal Duplication in the Ancestral Gene for Heme-Containing Globins.’ Journal of Molecular Biology 16(1): 17–27.

    Article  Google Scholar 

  • Fitch, Walter M. 1966b. ‘The Relation Between Frequencies of Amino Acids and Ordered Trinucleotides.’ Journal of Molecular Biology 16(1): 1–8.

    Article  Google Scholar 

  • Fitch, Walter M, Margoliash, Emanuel. 1967. ‘Construction of Phylogenetic Trees.’ Science 155(760): 279–284.

    Article  Google Scholar 

  • Florkin, Marcel. 1944. L’évolution Biochimique. Paris:Masson & cie.

    Google Scholar 

  • Florkin, Marcel. 1949. Biochemical Evolution. New York:Academic Press.

    Google Scholar 

  • Francoeur, Eric, Segal, Jérôme. 2004. ‘From Model Kits to Interactive Graphics.’ S de Chadarevian, N Hopwood (eds.), Models: The Third Dimension of Science. Stanford, CA:Stanford University Press.

    Google Scholar 

  • Gamow, George. 1954. ‘Possible Relation Between Desoxyribonucleic Acid and Protein Structure.’ Nature 173: 318.

    Article  Google Scholar 

  • Gamow, George, Metropolis, Nicolas. 1954. ‘Numerology of Polypeptide Chains.’ Science 120(3124): 779–780.

    Google Scholar 

  • Gamow, George, Rich, Alexander, Yčas, Martynas. 1956. ‘The Problem of Information Transfer from the Nucleic Acids to Proteins.’ Advances in Biological and Medical Physics 4: 23–68.

    Google Scholar 

  • Gamow, George, Yčas, Martynas. 1955. ‘Statistical Correlation of Protein and Ribonucleic Acid Composition.’ Proceedings National Academy Science 41(12): 1011–1019.

    Article  Google Scholar 

  • Garcia-Sancho, Miguel. 2010, in press. “A New Insight into Sanger’s Development of Sequencing: From Proteins to DNA, 1943–1977.” Journal of the History of Biology.

  • Gaudillière, Jean-Paul. 2002. Inventer La Biomédecine: La France, l’Amérique et la Production des Savoirs du Vivant: 1945–1965. Paris:La Découverte.

    Google Scholar 

  • Hagen, Joel B. 1999. ‘Naturalist, Molecular Biology, and the Challenge of Molecular Evolution.’ Journal of the History of Biology 32: 321–341.

    Article  Google Scholar 

  • Hagen, Joel B. 2000. ‘The Origins of Bioinformatics.’ Nature Reviews 1: 231–236.

    Article  Google Scholar 

  • Hagen, Joel B. 2001. ‘The Introduction of Computers into Systematic Research in the United States During the 1960s.’ Studies in the History and Philosophy of Biological and Biomedical Sciences 32(2): 291–314.

    Article  Google Scholar 

  • Harris, J Ieuan, Naughton, Michael A, Sanger, Frederick. 1956. ‘Species Differences in Insulin.’ Archives of Biochemistry and Biophysics 65(1): 427–438.

    Article  Google Scholar 

  • Hunt, John A, Ingram, Vernon M. 1958. ‘The Chemical Effects of Gene Mutations in Some Abnormal Human Haemoglobins.’ Albert Neuberger (ed.), Symposium on Protein Structure. New York:Wiley.

    Google Scholar 

  • Jardine, Nicholas, Secord, James A, Spary, Emma C (eds.). 1996. Cultures of Natural History. London/New York:Cambridge University Press.

    Google Scholar 

  • Jukes, Thomas H. 1962a. ‘Beta Lactoglobulins and Amino Acid Code.’ Biochemical and Biophysical Research Communications 7(4): 281–283.

    Article  Google Scholar 

  • Jukes, Thomas H. 1962b. ‘Possible Base Sequences in Amino Acid Code.’ Biochemical and Biophysical Research Communications 7(6): 497–502.

    Article  Google Scholar 

  • Jukes, Thomas H. 1962c. ‘Relations Between Mutations and Base Sequences in Amino Acid Code.’ Proceedings of the National Academy of Sciences of the United States of America 48(10): 1809–1815.

    Article  Google Scholar 

  • Jukes, Thomas H. 1963. ‘Some Recent Advances in Studies of the Transcription of the Genetic Message.’ Advances in Biological and Medical Physics 9: 1–41.

    Google Scholar 

  • Kay, Lily E. 1993. The Molecular Vision of Life. Caltech, the Rockefeller Foundation and the Rise of the New Biology. New York:Oxford University Press.

    Google Scholar 

  • Kay, Lily E. 1988. “Laboratory Technology and Biological Knowledge: The Tiselius Electrophoresis Apparatus, 1930–1945.” History and Philosophy of the Life Science 10:51–72.

  • Kay, Lily E. 2000. Who Wrote the Book of Life. A History of the Genetic Code. Stanford:Sanford University Press.

    Google Scholar 

  • Keller, Evelyn Fox. 1992. Secrets of Life, Secrets of Death: Essays on Language, Gender, and Science. New York:Routledge.

    Google Scholar 

  • Keller, Evelyn Fox. 1995. Refiguring Life, Metaphors of Twentieth-Century Biology. New York:Columbia University Press.

    Google Scholar 

  • Keller, Evelyn Fox. 2000. The Century of the Gene. Cambridge:Harvard University Press.

    Google Scholar 

  • Kohler, Robert E. 1982. From Medical Chemistry to Biochemistry. The Making of a Biomedical Discipline. Cambridge:Cambridge University Press.

    Google Scholar 

  • Kohler, Robert E. 2002. Landscapes and Labscapes: Exploring the Lab-Field Border in Biology. Chicago:The University of Chicago Press.

    Google Scholar 

  • Ledley, Robert S. 1955. ‘Digital Computational Methods in Symbolic Logic, with Examples in Biochemistry.’ Proceedings of the National Academy of Sciences 41(7): 498–511.

    Article  Google Scholar 

  • Ledley, Robert S. 1959a. ‘Reasoning Foundations of Medical Diagnosis; Symbolic Logic, Probability, and Value Theory Aid Our Understanding of How Physicians Reason.’ Science 130(3366): 9–21.

    Article  Google Scholar 

  • Ledley, Robert S. 1959b. ‘Digital Electronic Computers in Biomedical Sciences.’ Science 130: 1225–1234.

    Article  Google Scholar 

  • Ledley, Robert S. 1960. ‘Letters to the Editor.’ Science 131(3399): 474–564.

    Article  Google Scholar 

  • Ledley, Robert S. 1965. Use of Computers in Biology and Medicine. New York/Saint Louis:McGraw-Hill.

    Google Scholar 

  • Ledley, Robert S, Lusted, LB. 1959. ‘Probability, Logic and Medical Diagnosis.’ Science 130(3380): 892–930.

    Article  Google Scholar 

  • Lengyel, Peter, Speyer, Joseph F, Ochoa, Severo. 1961. ‘Synthetic Polynucleotides and the Amino Acid Code.’ Proceedings of the National Academy of Sciences 47: 1936–1942.

    Article  Google Scholar 

  • Lengyel, Peter, Speyer, Joseph F, Basilio, Carlos, Ochoa, Severo. 1962. ‘Synthetic Polynucleotides and the Amino Acid Code. III.’ Proceedings of the National Academy of Sciences 48: 282–284.

    Article  Google Scholar 

  • Lenoir, Timothy. 1999. ‘Shaping Biomedicine as an Information Science.’ ME Bowden, TB Hahn, RV Williams (eds.), Proceedings of the 1998 Conference on the History and Heritage of Science Information Systems. Medford:Information Today.

    Google Scholar 

  • Light, Junnifer S. 1999. ‘When Computers Were Women.’ Technology and Culture 40(3): 455–483.

    Google Scholar 

  • Margoliash, Emanuel. 1963. ‘Primary Structure and Evolution of Cytochrome C.’ Proceedings of the National Academy of Sciences 50: 672–679.

    Article  Google Scholar 

  • Medical Research Council. 1965. Mathematics and Computer Science in Biology and Medicine. London:H. M. Stationery Office.

    Google Scholar 

  • Miles, Wyndham D. 1982. A History of the National Library of Medicine: The Nation’s Treasury of Medical Knowledge. Washington, DC:U.S. Department of Health and Human Services.

    Google Scholar 

  • Miller, Stanley L, Urey, Harold C. 1959. ‘Organic Compound Synthesis on the Primitive Earth.’ Science 130(3370): 245–251.

    Article  Google Scholar 

  • Moore, Stanford, Spackman, Darrel H, Stein, William H. 1958. ‘Automatic Recording Apparatus for Use in the Chromatography of Amino Acids.’ Federation Proceedings 17(4): 1107–1115.

    Google Scholar 

  • Morange, Michel. 2000. A History of Molecular Biology. Cambridge:Harvard University Press.

    Google Scholar 

  • Morgan, Gregory J. 1998. ‘Emile Zuckerkandl, Linus Pauling, and the Molecular Evolutionary Clock, 1959–1965.’ Journal of the History of Biology 31: 155–178.

    Article  Google Scholar 

  • November, Joseph A. 2004. ‘LINC: Biology’s Revolutionary Little Computer.’ Endeavour 28(3): 125–131.

    Article  Google Scholar 

  • November, Joseph A. 2006. Digitalizing Life: The Introduction of Computers to Biology and Medicine. Doctoral Thesis, Princeton University.

  • Nyhart, Lynn K. 1996. ‘Natural History and the ‘New’ Biology.’ Nicholas Jardine, James A Secord, C Spary Emma (eds.), Cultures of Natural History. London:Cambridge University Press.

    Google Scholar 

  • Oakley, Margaret B, Kimball, George E. 1949. ‘Punched Card Calculation of Resonance Energies.’ Journal of Chemical Physics 17(8): 706–717.

    Article  Google Scholar 

  • Paléus, Sven, Tuppy, Hans. 1959. ‘A Hemopeptide from a Tryptic Hydrolysate of Rhodospirillum-Rubrum Cytochrome-C.’ Acta Chemica Scandinavica 13(4): 641–646.

    Article  Google Scholar 

  • Pickstone, John V. 1993. ‘Ways of Knowing: Towards a Historical Sociology of Science, Technology and Medicine.’ British Journal for the History of Science 26: 433–458.

    Article  Google Scholar 

  • Pickstone, John V. 2007. ‘Working Knowledges Before and After Circa 1800. Practices and Disciplines in the History of Science, Technology and Medicine.’ Isis 98: 489–516.

    Article  Google Scholar 

  • Rasmussen, Nicolas. 1997. Picture Control the Electron Microscope and the Transformation of Biology in America, 1940–1960. Stanford:Stanford University Press.

    Google Scholar 

  • Rogers, Frank B. 1964. ‘The Development of MEDLARS.’ Bulletin of the Medical Library Association 52: 150–151.

    Google Scholar 

  • Sanger, Frederick. 1949. ‘Species Differences in Insulins.’ Nature 164(4169): 529.

    Article  Google Scholar 

  • Sanger, Frederick. 1988. ‘Sequences, Sequences, and Sequences.’ Annual Review of Biochemistry 57: 1–28.

    Article  Google Scholar 

  • Segal, Jérôme. 2003. Le Zéro et le Un. Histoire de la Notion Scientifique d’Information. Paris:Syllepse.

    Google Scholar 

  • Shapiro, Marvin B, Merril, Carl R, Bradley, Dan F, Mosimann, James E. 1965. ‘Reconstruction of Protein and Nucleic Acid Sequences: Alamine Transfer Ribonucleic Acid”.’ Science 150(698): 918–921.

    Article  Google Scholar 

  • Smith, Emil L. 1962a. ‘Nucleotide Base Coding and Amino Acid Replacements in Proteins.’ Proceedings of the National Academy of Sciences 48: 677–684.

    Article  Google Scholar 

  • Smith, Emil L. 1962b. ‘Nucleotide Base Coding and Amino Acid Replacements in Proteins. II.’ Proceedings of the National Academy of Sciences 48: 859–864.

    Article  Google Scholar 

  • Sommer, Marianne. 2008. ‘History in the Gene: Negotiations Between Molecular and Organismal Anthropology.’ Journal of the History of Biology 43: 473–528.

    Article  Google Scholar 

  • Spath, Susan B. 1999. C. B. van Niel and the Culture of Microbiology, 1920–1965. Doctoral Thesis, Berkeley University.

  • Speyer, Joseph F, Lengyel, Peter, Basilio, Carlos, Ochoa, Severo. 1962a. ‘Synthetic Polynucleotides and the Amino Acid Code. II.’ Proceedings of the National Academy of Sciences 48: 63–68.

    Article  Google Scholar 

  • Speyer, Joseph F, Lengyel, Peter, Basilio, Carlos, Ochoa, Severo. 1962b. ‘Synthetic Polynucleotides and the Amino Acid Code. IV.’ Proceedings of the National Academy of Sciences 48: 441–448.

    Article  Google Scholar 

  • Stacy, Ralph W, Waxman, Bruce D. 1965. Computers in Biomedical Research. New York:Academic Press.

    Google Scholar 

  • Sterling, Theodor D, Pollack, Seymour V. 1965. Computers and the Life Sciences. New York:Columbia University Press.

    Google Scholar 

  • Strasser, Bruno J. 2006a. ‘Collecting and Experimenting: The Moral Economies of Biological Research, 1960s–1980s.’ Preprints of the Max-Planck Institute for the History of Science 310: 105–123.

    Google Scholar 

  • Strasser, Bruno J. 2006b. ‘A World in One Dimension: Linus Pauling, Francis Crick and the Central Dogma of Molecular Biology.’ History and Philosophy of the Life Science 28: 491–512.

    Google Scholar 

  • Strasser, Bruno J. 2006c. La fabrique d’une nouvelle science: La biologie moléculaire à l’âge atomique (1945–1964). Florence:Olschki.

    Google Scholar 

  • Strasser, Bruno J. 2008. ‘Genbank: Natural History in the 21st Century?’ Science 322: 537–538.

    Article  Google Scholar 

  • Strasser, Bruno J. 2010, in press. “Laboratories, Museums, and the Comparative Perspective: Alan A. Boyden’s Quest for Objectivity in Serological Taxonomy, 1925–1962.” Historical Studies in the Natural Sciences.

  • Strick, James E. 2004. ‘Creating a Cosmic Discipline: The Crystallization and Consolidation of Exobiology, 1957–1973.’ Journal of the History of Biology 37(1): 131–180.

    Article  Google Scholar 

  • Suárez-Diaz, Edna. 2007. ‘The Rhetoric of Informational Molecules: Authority and Promises in the Early Study of Molecular Evolution.’ Science in Context 20(4): 649–677.

    Article  Google Scholar 

  • Suárez-Díaz, Edna. 2009. ‘Molecular Evolution: Concepts and the Origin of Disciplines.’ Studies in the History and Philosophy of Biological and Biomedical Sciences 40(1): 43–53.

    Article  Google Scholar 

  • Suárez-Díaz, Edna, Anaya-Muñoz, Victor H. 2008. ‘History, Objectivity, and the Construction of Molecular Phylogenies.’ Studies in the History and Philosophy of Biological and Biomedical Sciences 39(4): 451–468.

    Article  Google Scholar 

  • Tsugita, Akira, Fraenkel-Conrat, Heinz. 1960. ‘The Amino Acid Composition and C-Terminal Sequence of a Chemically Evoked Mutant of TMV.’ Proceedings of the National Academy of Sciences 46(5): 636–642.

    Article  Google Scholar 

  • Tuppy, Hans. 1958. ‘Über die Artspezificität der Proteinstruktur.’ Albert Neuberger (ed.), Symposium on Protein Structure. New York:Wiley, pp. 66–76..

    Google Scholar 

  • Tuppy, Hans. 1959. ‘Aminosaure-Sequenzen in Proteinen.’ Naturwissenschaften 46(2): 35–43.

    Article  Google Scholar 

  • Tuppy, Hans, Bodo, Gerhard. 1954. ‘Cytochrom c. III. Zur Frage der Artspezifität von Säugetier-Cytochrom c.’ Monatshefte für Chemie 85(5): 1182–1186.

    Article  Google Scholar 

  • Tuppy, Hans, Dus, K. 1958. ‘Eine Untersuchung über Cytochrom-c aus Hefe.’ Monatshefte für Chemie 89(3): 407–417.

    Article  Google Scholar 

  • Tuppy, Hans, Paléus, Sven. 1955. ‘Study of a Peptic Degradation Product of Cytochrome-C.1. Purification and Chemical Composition.’ Acta Chemica Scandinavica 9(3): 353–364.

    Article  Google Scholar 

  • Watson, James D. 2001. Genes, Girls and Gamow. Oxford:Oxford University Press.

    Google Scholar 

  • Wittmann, Heinz-Günter. 1960. ‘Comparison of the Tryptic Peptides of Chemically Induced and Spontaneous Mutants or Tobacco Mosaic Virus.’ Virology 12: 609–612.

    Article  Google Scholar 

  • Wolfe, Audra J. 2002. ‘Germs in Space. Joshua Lederberg, Exobiology, and the Public Imagination, 1958–1964.’ Isis 93: 183–205.

    Article  Google Scholar 

  • Yčas, Martinas. 1958. ‘The Protein Text.’ Hubert P Yockey (ed.), Symposium on Information Theory in Biology. New York:Pergamon Press.

    Google Scholar 

  • Yčas, Martinas. 1961. ‘Replacement of Amino Acids in Proteins.’ Journal of Theoretical Biology 1(2): 244.

    Article  Google Scholar 

  • Zuckerkandl, Emile, Pauling, Linus. 1962. ‘Molecular Disease, Evolution, and Genic Heterogeneity.’ M Kasha, B Pullman (eds.), Horizons in Biochemistry. New York:Academic Press.

    Google Scholar 

  • Zuckerkandl, Emile, Pauling, Linus. 1965. ‘Molecules as Documents of Evolutionary History.’ Journal of Theoretical Biology 8: 357–366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno J. Strasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strasser, B.J. Collecting, Comparing, and Computing Sequences: The Making of Margaret O. Dayhoff’s Atlas of Protein Sequence and Structure, 1954–1965. J Hist Biol 43, 623–660 (2010). https://doi.org/10.1007/s10739-009-9221-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10739-009-9221-0

Keywords

Navigation