Skip to main content
Log in

Expression and redistribution of β-catenin in the cardiac myocytes of left ventricle of spontaneously hypertensive rat

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Beta-catenin is not only an adhering junction protein, but also the central player of the canonical Wnt signalling pathway. In order to investigate the roles of β-catenin in the mechanism of myocardial hypertrophy, we determined the expression and distribution of β-catenin in the cardiomyocytes of spontaneously hypertensive heart failure (SHHF) rats and age-matched Wistar-Kyoto (WKY) rats. We identified the reducing of β-catenin expression in the membrane protein fraction but increasing in the nuclear protein in the 6 and 12 month-old SHHF rats as compared with the age-matched WKY rats by Western blotting. Immunolabeling of β-catenin colocalized with cadherin at the intercalated disc sites and showed nuclear accumulation in myocytes of SHHF rats. We also revealed that the association between glycogen synthase kinase-3β and β-catenin had weakened in the 6 month-old SHHF rats as compared with the age-matched WKY rats by immunoprecipitation. These findings suggested that nuclear translocation of β-catenin might play important roles in regulating signal transduction in the decompensated hypertrophy stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alain H, Adrien C, Evelyne P, Roman S, Irina A, Hoerstrup SP, Taketo MM, Pedrazzini T, Perriard JC, Ehler E (2010) Stabilised beta-catenin in postnatal ventricular myocardium leads to dilated cardiomyopathy and premature death. J Basic Res Cardiol 105:597–608

    Article  Google Scholar 

  • Ana LG, Maria D, Vivanco M, Robert MK (2000) α-catenin inhibits β-catenin signaling by preventing formation of a β-catenin.T-cell factor DNA complex. J Biol Chem 275:21883–21888

    Article  Google Scholar 

  • Behrens J, Jerchow BA, Würtele M, Grimm J, Asbrand C, Wirtz R, Kühl M, Wedlich D, Birchmeier W (1998) Functional interaction of an axin homolog, conduction, with beta-catenin, APC, and GSK3. Science 280:596–599

    Article  PubMed  CAS  Google Scholar 

  • Blough E, Dineen B, Esser K (1996) Extraction of nuclear proteins from striated muscle tissue. J Biotech 26(202–204):206

    Google Scholar 

  • Brancaccio M, Fratta L, Notte A, Hirsch E, Poulet R, Guazzone S, De Acetis M, Vecchione C, Marino G, Altruda F, Silengo L, Tarone G, Lembo G (2003) Melusin, a muscle-specific integrin b1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 9:68–75

    Article  PubMed  CAS  Google Scholar 

  • Cox RT, Kirkpatrick C, Peifer M (1996) Armadillo is required for adherens junction assembly, cell polarity, and morphogenesis during drosophila embryogenesis. J Cell Biol 134:133–148

    Article  PubMed  CAS  Google Scholar 

  • de Barros EP, Garcia-Pinto AB, Machado PY, dos Santos Pereira MJ, de Carvalho JJ (2011) Rosuvastatin beneficially alters the glomerular structure of kidneys from spontaneously hypertensive rats (SHRs). J Mol Histol 42(4):323–331

    Article  PubMed  CAS  Google Scholar 

  • Fagotto F, Funayama N, Gluck U, Gumbiner B (1996) Binding to cadherins antagonizes the signaling activity of beta-catenin during axis formation in xenopus. J Cell Biol 132:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Gottardi CJ, Gumbiner BM (2004) Distinct molecular forms of beta-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol 167:339–349

    Article  PubMed  CAS  Google Scholar 

  • Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J, Grazette L, Michael A, Hajjar R, Force T, Molkentin JD (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677

    Article  PubMed  CAS  Google Scholar 

  • Heasman J, Crawford A, Goldstone K, GarnerHamrick P, Gumbiner B, McCrea P, Kintner C, Noro C, Wylie C (1994) Overexpression of cadherins and underexpression of beta-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. J Cell 79:791–803

    Article  CAS  Google Scholar 

  • Kuppuswamy D, Kerr C, Narishige T, Kasi VS, Menick DR, Cooper G IV (1997) Association of tyrosine-phosphorylated c-Src with the cytoskeleton of hypertrophying myocardium. J Biol Chem 272:4500–4508

    Article  PubMed  CAS  Google Scholar 

  • Laura M, Roberto B, Pamela S, Ilaria S, Paola F, Loredana A, Anna C, Camilla P, Marilena M, Roberta F, Felicia C, Cristina F, Luciana C, Andrea M, Di Paolo N (2003) β-catenin accumulates in intercalated disks of hypertrophic cardiomyopathic hearts. J Cardiovasc Res 60:376–387

    Article  Google Scholar 

  • Li Z, Yi XP, Zhong L, Li F, Zhou W, Cao W, Zhen Y, Wang X, Wang Y (2007) Expression of focal adhesion kinase in cardiac myocytes of hypertrophic ventricle. Chin J Pathol 36:677–680

    Google Scholar 

  • Li L, Wang X, Xie Y, Li Z, Cao W, Yi XP (2011) Membrane translocation of Src kinase in cardiac myocytes of hypertrophic left ventricle of hypertensive rats. Chin Heart J 23:295–299

    Google Scholar 

  • Manisastry SM, Han M, Linask KK (2006) Early temporal-specific responses and differential sensitivity to lithium and Wnt-3A exposure during heart development. J Dev Dyn 235:2160–2174

    Article  CAS  Google Scholar 

  • Mara B, Hirsch Emilio, Notte Antonella, Selvetella Giulio, Lembo Giuseppe, Tarone Guido (2006) Integrin signalling: the tug-of-war in heart hypertrophy. J Cardiovasc Res 70:422–433

    Article  Google Scholar 

  • Marisa MF, Jérôme T, Marie-Ange D, Walter B, Joerg H, Jean PL, Amparo C, Marina AG (2007) Beta-catenin regulates P-cadherin expression in mammary basal epithelial cells. J FEBS Lett 581:831–836

    Article  Google Scholar 

  • Onodera T, Tamura T, Said S, McCune SA, Gerdes AM (1998) Maladaptive remodeling of cardiac myocyte shape begins long before failure in hypertension. Hypertension 32:753–757

    Article  PubMed  CAS  Google Scholar 

  • Oscar HC (2007) Cardiac hypertrophy and the Wnt/frizzle pathway. Hypertension 49:427–428

    Article  Google Scholar 

  • Rebecca LD, Cara JG (2007) Phospho-regulation of ß-catenin adhesion and signaling functions. J Physiol 22:303–309

    Article  Google Scholar 

  • Shevtsov SP, Haq S, Force T (2006) Activation of beta-catenin signaling pathways by classical G-protein-coupled receptors: mechanisms and consequences in cycling and non-cycling cells. Cell Cycle 5:2295–2300

    Article  PubMed  CAS  Google Scholar 

  • Syed H, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, Woodgett J, Kilter H, Force T (2003) Stabilization of betacatenin by a Wnt-independent mechanism regulates cardiomyocyte growth. J Proc Natl Acad Sci USA 100:4610–4615

    Article  Google Scholar 

  • Van Johan HES, Barker N, Clevers H (2003) You Wnt some, you lose some: oncogenes in the Wnt signaling pathway. Curr Opin Genet Dev 13:28–33

    Article  Google Scholar 

  • Xin C, Shevtsov SP, Hsich E, Cui L, Haq S, Kerkela R, Molkentin JD, Liao R, Salomon RN, Patten R, Force T (2006) The ß-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. J Mol Cell Biol 26:4462–4473

    Article  Google Scholar 

  • Yi XP, Gerdes AM, Li F (2002) Myocyte redistribution of GRK2 and GRK5 in hypertensive, heart-failure–prone rats. Hypertension 39:1058–1063

    Article  PubMed  CAS  Google Scholar 

  • Yi XP, Zhou J, Huber L, Qu J, Wang X, Martin Gerdes A, Li F (2006) Nuclear compartmentalization of FAK and FRNK in cardiac myocytes. Am J Physiol Heart Circ Physiol 290:H2509–H2515

    Article  PubMed  CAS  Google Scholar 

  • Zhang CG, Jia ZQ, Li BH, Zhang H, Liu YN, Chen P, Ma KT, Zhou CY (2009) Beta-catenin/TCF/LEF1 can directly regulate phenylephrine-induced cell hypertrophy and Anf transcription in cardiomyocytes. J Biochem Biophys Res Commun 390:258–262

    Article  CAS  Google Scholar 

  • Zhou H, Yang HX, Yuan Y, Deng W, Zhang JY, Bian ZY, Zong J, Dai J, Tang QZ (2013) Paeoniflorin attenuates pressure overload-induced cardiac remodeling via inhibition of TGFβ/Smads and NF-κB pathways. J Mol Histol. 2013 Feb 17. [Epub ahead of print] PubMed PMID: 23417833

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30871046) and the Guangdong Natural Science Foundation (8151008901000162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian Ping Yi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Q., Chen, P., Xu, Z. et al. Expression and redistribution of β-catenin in the cardiac myocytes of left ventricle of spontaneously hypertensive rat. J Mol Hist 44, 565–573 (2013). https://doi.org/10.1007/s10735-013-9507-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-013-9507-6

Keywords

Navigation