Skip to main content
Log in

Characterization of the N-glycosylation phenotype of erythrocyte membrane proteins in congenital dyserythropoietic anemia type II (CDA II/HEMPAS)

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Congenital dyserythropoetic anemia type II (CDA II) is characterized by bi- and multinucleated erythroblasts and an impaired N-glycosylation of erythrocyte membrane proteins. Several enzyme defects have been proposed to cause CDA II based on the investigation of erythrocyte membrane glycans pinpointing to defects of early Golgi processing steps. Hitherto no molecular defect could be elucidated. In the present study, N-glycosylation of erythrocyte membrane proteins of CDA II patients and controls was investigated by SDS-Page, lectin binding studies, and MALDI-TOF/MS mapping in order to allow an embracing view on the glycosylation defect in CDA II. Decreased binding of tomato lectin was a consistent finding in all typical CDA II patients. New insights into tomato lectin binding properties were found indicating that branched polylactosamines are the main target. The binding of Aleuria aurantia, a lectin preferentially binding to α1-6 core-fucose, was reduced in western blots of CDA II erythrocyte membranes. MALDI-TOF analysis of band 3 derived N-glycans revealed a broad spectrum of truncated structures showing the presence of high mannose and hybrid glycans and mainly a strong decrease of large N-glycans suggesting impairment of cis, medial and trans Golgi processing. Conclusion: Truncation of N-glycans is a consistent finding in CDA II erythrocytes indicating the diagnostic value of tomato-lectin studies. However, structural data of erythrocyte N-glycans implicate that CDA II is not a distinct glycosylation disorder but caused by a defect disturbing Golgi processing in erythroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Heimpel, H., Wendt, F.: Congenital dyserythropoietic anemia with karyorrhexis and multinuclearity of erythroblasts. Helv. Med. Acta 34, 103–115 (1968)

    PubMed  CAS  Google Scholar 

  2. Crookston, J.H., Crookston, M.C., Burnie, K.L., Francombe, W.H., Dacie, J.V., Davis, J.A., Lewis, S.M.: Hereditary erythroblastic multinuclearity associated with a positive acidified-serum test: a type of congenital dyserythropoietic anaemia. Br. J. Haematol. 17, 11–26 (1969)

    Article  PubMed  CAS  Google Scholar 

  3. Iolascon, A., Delaunay, J., Wickramasinghe, S.N., Perrotta, S., Gigante, M., Camaschella, C.: Natural history of congenital dyserythropoietic anemia type II. Blood. 98, 1258–1260 (2001)

    Article  PubMed  CAS  Google Scholar 

  4. Heimpel, H., Anselstetter, V., Chrobak, L., Denecke, J., Einsiedler, B., Gallmeier, K., Griesshammer, A., Marquardt, T., Janka-Schaub, G., Kron, M., Kohne, E.: Congenital dyserythropoietic anemia type II: epidemiology, clinical appearance, and prognosis based on long-term observation. Blood. 102, 4576–4581 (2003)

    Article  PubMed  CAS  Google Scholar 

  5. Wickramasinghe, S.N.: Congenital dyserythropoietic anaemias: clinical features, haematological morphology and new biochemical data. Blood Rev. 12, 178–200 (1998)

    Article  PubMed  CAS  Google Scholar 

  6. Alloisio, N., Texier, P., Denoroy, L., Berger, C., Miraglia del Giudice, E., Perrotta, S., Iolascon, A., Gilsanz, F., Berger, G., Guichard, J.: The cisternae decorating the red blood cell membrane in congenital dyserythropoietic anemia (type II) originate from the endoplasmic reticulum. Blood. 87, 4433–4439 (1996)

    PubMed  CAS  Google Scholar 

  7. Anselstetter, V., Horstmann, H.J., Heimpel, H.: Congenital dyserythropoietic anaemia, types I and II: aberrant pattern of erythrocyte membrane proteins in CDA II, as revealed by two-dimensional polyacrylamide gel electrophoresis. Br. J. Haematol. 35, 209–215 (1977)

    Article  PubMed  CAS  Google Scholar 

  8. Fukuda, M.N., Papayannopoulou, T., Gordon-Smith, E.C., Rochant, H., Testa, U.: Defect in glycosylation of erythrocyte membrane proteins in congenital dyserythropoietic anaemia type II (HEMPAS). Br. J. Haematol. 56, 55–68 (1984)

    Article  PubMed  CAS  Google Scholar 

  9. Iolascon, A., D'Agostaro, G., Perrotta, S., Izzo, P., Tavano, R., Miraglia del Giudice, B.: Congenital dyserythropoietic anemia type II: molecular basis and clinical aspects. Haematologica. 81, 543–559 (1996)

    PubMed  CAS  Google Scholar 

  10. Marquardt, T., Denecke, J.: Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur. J. Pediatr. 162, 359–379 (2003)

    PubMed  CAS  Google Scholar 

  11. Casey, J.R., Lieberman, D.M, Reithmeier, R.A: Purification and characterization of band 3 protein. Methods Enzymol. 173, 494–512 (1989)

    Article  PubMed  CAS  Google Scholar 

  12. Anumula, K.R., Taylor, P.B.: A comprehensive procedure for preparation of partially methylated alditol acetates from glycoprotein carbohydrates. Anal. Biochem. 203, 101–108 (1992)

    Article  PubMed  CAS  Google Scholar 

  13. Kawashima, H., Sueyoshi, S., Li, H., Yamamoto, K., Osawa, T.: Carbohydrate binding specificities of several poly-N-acetyllactosamine-binding lectins. Glycoconj. J. 7, 323–334 (1990)

    Article  PubMed  CAS  Google Scholar 

  14. Merkle, R.K., Cummings, R.D.: Relationship of the terminal sequences to the length of poly-N-acetyllactosamine chains in asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147. Immobilized tomato lectin interacts with high affinity with glycopeptides containing long poly-N-acetyllactosamine chains. J. Biol. Chem. 262, 8179–8189 (1987)

    PubMed  CAS  Google Scholar 

  15. Fukuda, M., Dell, A., Fukuda, M.N.: Structure of fetal lactosaminoglycan. The carbohydrate moiety of band 3 isolated from human umbilical cord erythrocytes. J. Biol. Chem. 259, 4782–4791 (1984)

    PubMed  CAS  Google Scholar 

  16. Findlay, J.B.: The receptor proteins for concanavalin A and Lens culinaris phytohemagglutinin in the membrane of the human erythrocyte. J. Biol. Chem. 249, 4398–4403 (1974)

    PubMed  CAS  Google Scholar 

  17. Yamashita, K., Kochibe, N., Ohkura, T., Ueda, I., Kobata, A.: Fractionation of L-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin. J. Biol. Chem. 260, 4688–4693 (1985)

    PubMed  CAS  Google Scholar 

  18. Baines, A.J., Banga, J.P., Gratzer, W.B., Linch, D.C., Huehns, E.R.: Red cell membrane protein anomalies in congenital dyserythropoietic anaemia, type II (HEMP AS). Br. J. Haematol. 50, 563–574 (1982)

    Article  PubMed  CAS  Google Scholar 

  19. Fukuda, M.N., Dell, A., Scartezzini, P.: Primary defect of congenital dyserythropoietic anemia type II. Failure in glycosylation of erythrocyte lactosaminoglycan proteins caused by lowered N-acetylglucosaminyltransferase II. J. Biol. Chem. 262, 7195–7206 (1987)

    PubMed  CAS  Google Scholar 

  20. Fukuda, M.N., Masri, K.A., Dell, A., Luzzatto, L., Moremen, K.W.: Incomplete synthesis of N-glycans in congenital dyserythropoietic anemia type II caused by a defect in the gene encoding alpha-mannosidase II. Proc. Natl. Acad. Sci. U. S. A. 87, 7443–7447 (1990)

    Article  PubMed  CAS  Google Scholar 

  21. Fukuda, M.N., Masri, K.A., Dell, A., Thonar, E.J., Klier, G., Lowenthal, R.M.: Defective glycosylation of erythrocyte membrane glycoconjugates in a variant of congenital dyserythropoietic anemia type II: association of low level of membrane-bound form of galactosyltransferase. Blood. 73, 1331–1339 (1989)

    PubMed  CAS  Google Scholar 

  22. Gasparini, P., Miraglia del Giudice, E., Delaunay, J., Totaro, A., Granatiero, M., Melchionda, S., Zelante, L., Iolascon, A.: Localization of the congenital dyserythropoietic anemia II locus to chromosome 20q11.2 by genomewide search. Am. J. Hum. Genet. 61, 1112–1116 (1997)

    Article  PubMed  CAS  Google Scholar 

  23. Iolascon, A., De Mattia, D., Perrotta, S., Carella, M., Gasparini, P., Lambertenghi Deliliers, G.: Genetic heterogeneity of congenital dyserythropoietic anemia type II. Blood. 92, 2593–2594 (1998)

    PubMed  CAS  Google Scholar 

  24. Lanzara, C., Ficarella, R., Totaro, A., Chen, X., Roberto, R., Perrotta, S., Lasalandra, C., Gasparini, P., Iolascon, A., Carella, M.: Congenital dyserythropoietic anemia type II: exclusion of seven candidate genes. Blood Cells Mol. Dis. 30, 22–29 (2003)

    Article  PubMed  CAS  Google Scholar 

  25. Fukuda, M., Dell, A., Oates, J.E.: Fukuda MN Structure of branched lactosaminoglycan, the carbohydrate moiety of band 3 isolated from adult human erythrocytes. J. Biol. Chem. 259, 8260–8273 (1984)

    PubMed  CAS  Google Scholar 

  26. Zdebska, E., Mendek-Czajkowska, E., Ploski, R., Woeniewicz, B., Koscielak, J.: Heterozygosity of CDAN II (HEMPAS) gene may be detected by the analysis of erythrocyte membrane glycoconjugates from healthy carriers. Haematologica 87, 126–130 (2002)

    PubMed  CAS  Google Scholar 

  27. Kameh, H., Landolt-Marticorena, C., Charuk, J.H., Schachter, H., Reithmeier, R.A.: Structural and functional consequences of an N-glycosylation mutation (HEMPAS) affecting human erythrocyte membrane glycoproteins. Biochem. Cell Biol. 76, 823–835 (1998)

    Article  PubMed  CAS  Google Scholar 

  28. Zdebska, E., Iolascon, A., Spychalska, J., Perrotta, S., Lanzara, C., Smolenska-Sym, G., Koscielak, J.: Abnormalities of erythrocyte glycoconjugates are identical in two families with congenital dyserythropoietic anemia type II with different chromosomal localizations of the disease gene. Haematologica 92, 427–428 (2007)

    Article  PubMed  Google Scholar 

  29. Fujii, S., Nishiura, T., Nishikawa, A., Miura, R., Taniguchi, N.: Structural heterogeneity of sugar chains in immunoglobulin G. Conformation of immunoglobulin G molecule and substrate specificities of glycosyltransferases. J. Biol. Chem. 265, 6009–6018 (1990)

    PubMed  CAS  Google Scholar 

  30. Fukuta, K., Abe, R., Yokomatsu, T., Omae, F., Asanagi, M., Makino, T.: Control of bisecting GlcNAc addition to N-linked sugar chains. J. Biol. Chem. 275, 23456–23461 (2000)

    Article  PubMed  CAS  Google Scholar 

  31. Wilson, J.R., Williams, D., Schachter, H.: The control of glycoprotein synthesis: N-acetylglucosamine linkage to a mannose residue as a signal for the attachment of L-fucose to the asparagine-linked N-acetylglucosamine residue of glycopeptide from alpha1-acid glycoprotein. Biochem. Biophys. Res. Commun. 72, 909–916 (1976)

    Article  PubMed  CAS  Google Scholar 

  32. Paw, B.H., Davidson, A.J., Zhou, Y., Li, R., Pratt, S.J., Lee, C., Trede, N.S., Brownlie, A., Donovan, A., Liao, E.C., Ziai, J.M., Drejer, A.H., Guo, W., Kim, C.H., Gwynn, B., Peters, L.L., Chernova, M.N., Alper, S.L., Zapata, A., Wickramasinghe, S.N., Lee, M.J., Lux, S.E., Fritz, A., Postlethwait, J.H., Zon, L.I.: Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency. Nat. Genet. 34, 59–64 (2003)

    Article  PubMed  CAS  Google Scholar 

  33. Hansske, B., Thiel, C., Lubke, T., Hasilik, M., Honing, S., Peters, V., Heidemann, P.H., Hoffmann, G.F., Berger, E.G., von Figura, K., Korner, C.: Deficiency of UDP-galactose: N-acetylglucosamine beta-1,4-galactosyltransferase I causes the congenital disorder of glycosylation type IId. J. Clin. Invest. 109, 725–733 (2002)

    Article  PubMed  CAS  Google Scholar 

  34. Hato, M., Nakagawa, H., Kurogochi, M., Akama, T.O., Marth, J.D., Fukuda, M.N., Nishimura, S.: Unusual N-glycan structures in alpha-mannosidase II/IIx double null embryos identified by a systematic glycomics approach based on two-dimensional LC mapping and matrix-dependent selective fragmentation method in MALDI-TOF/TOF mass spectrometry. Mol. Cell Proteomics 5, 2146–2157 (2006)

    Article  PubMed  CAS  Google Scholar 

  35. Foulquier, F., Ungar, D., Reynders, E., Zeevaert, R., Mills, P., Garcia-Silva, M.T., Briones, P., Winchester, B., Morelle, W., Krieger, M., Annaert, W., Matthijs, G.: A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1–Cog8 interaction in COG complex formation. Hum. Mol. Genet. 16, 717–730 (2007)

    Google Scholar 

  36. Marquardt, T.: A COG in the sugar machine. Nat. Med. 10, 457–458 (2004)

    Article  PubMed  CAS  Google Scholar 

  37. Shestakova, A., Zolov, S., Lupashin, V.: COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7, 191–204 (2006)

    Article  PubMed  CAS  Google Scholar 

  38. Wu, X., Steet, R.A., Bohorov, O., Bakker, J., Newell, J., Krieger, M., Spaapen, L., Kornfeld, S., Freeze, H.H.: Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat. Med. 10, 518–523 (2004)

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

J.D. was supported by a grant of Innovative Medizinische Forschung (De 110030) and J.D. and T.M. by a grant of the Bundesministerium für Bildung und Forschung (BMBF 01GM0313). G.Kreissel, V.Sablitzky, and K.Wardecki are acknowledged for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Denecke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denecke, J., Kranz, C., Nimtz, M. et al. Characterization of the N-glycosylation phenotype of erythrocyte membrane proteins in congenital dyserythropoietic anemia type II (CDA II/HEMPAS). Glycoconj J 25, 375–382 (2008). https://doi.org/10.1007/s10719-007-9089-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-007-9089-1

Keywords

Navigation