Skip to main content
Log in

Branchial structure and hydromineral equilibrium in juvenile turbot (Scophthalmus maximus) exposed to heavy fuel oil

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

This study is an attempt to go further in the comprehension of the effects of heavy fuel oil in the context of an accidental oil spill at sea. It focuses on the link between morphological and functional impacts of realistic doses of the dissolved fraction of a heavy fuel oil on fish gills. Juvenile turbot, Scophthalmus maximus were exposed to the dissolved fraction of a heavy fuel oil for 5 days and then placed 30 days in clean sea water for recovery. During the contamination period, the concentration of the 16 US EPA priority poly-aromatic hydrocarbons showed small variations around a mean value of 321.0 ± 9.1 ng l−1 (mean ± SEM). The contamination induced a 64% increase in hepatic cytochrome P 450 1A (Western blot analysis). Osmolality, [Na+] and [Cl] rapidly and significantly increased (by 14, 23 and 28% respectively) and slowly decreased to normal levels during the recovery period. At the same time, branchial histology showed decreases in the number of mucocytes (by 30%) and of chloride cells (by 95%) in the interlamellar epithelium. Therefore, it is suggested that the osmotic imbalance observed after the 5 days of exposure to the dissolved fraction of the heavy fuel oil is the consequence of the structural alteration of the gills i.e, the strong reduction of ionocyte numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aas E, Baussant T, Balk L, liewenborg B, Andersen OK (2000) PAH metabolites in bile, cytochrome P4501A and DNA adducts as environmental risk parameters for chronic oil exposure: a laboratory experiment with Atlantic cod. Aquat Toxicol 51:241–258. doi:10.1016/S0166-445X(00)00108-9

    Article  PubMed  CAS  Google Scholar 

  • Beyer J, Sandvik M, Skare JU, Egaas E, Hylland K, Waagbo R, Goksøyr A (1997) Time- and dose-dependent biomarker responses in flounder (Platichthys flesus L) exposed to benzo[a]pyrene, 2, 3, 3′, 4, 4′, 5-hexachlorobiphenyl (PCB-156) and cadmium. Biomarkers 2:35–44. doi:10.1080/135475097231959

    Article  CAS  Google Scholar 

  • Claireaux G, Dutil J-D (1992) Physiological response of the Atlantic cod (Gadus moruha) to hypoxia at various environmental salinities. J Exp Biol 163:97–118

    Google Scholar 

  • Claireaux G, Desaunay Y, Akcha F, Auperin B, Bocquene G, Budzinski FN, Cravedi JP, Davoodi F, Galois R, Gilliers C, Goanvec C, Guerault D, Imbert N, Mazeas O, Nonnotte G, Nonnotte L, Prunet P, Sebert P, Vettier A (2004) Influence of oil exposure on the physiology and ecology of the common sole Solea solea: experimental and field approaches. Aquat Living Resour 17:335–351. doi:10.1051/alr:2004043

    Article  CAS  Google Scholar 

  • Evans DH (1987) The fish gill: site of action and model for toxic effects of environmental pollutants. Environ Health Perspect 71:47–58

    Article  PubMed  CAS  Google Scholar 

  • Evans DH (2008) Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. Am J Physiol Regul Integr Comp Physiol 295:R704–R713. doi:10.1152/ajpregu.90337.2008

    Article  PubMed  CAS  Google Scholar 

  • Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177. doi:10.1152/physrev.00050.2003

    Article  PubMed  CAS  Google Scholar 

  • Gagnon MM, Holdway DA (2000) EROD induction and Biliary metabolite excretion following exposure to the water accomodated fraction of crude oil and to chemically dispersed crude oil. Arch of Environ Contam Toxicol 38:70–77. doi:10.1007/s002449910009

    Article  CAS  Google Scholar 

  • Geffard O, Budzinski H, LeMenach K (2004) Chemical and ecotoxicological characterisation of the “Erika” petroleum: biotests applied to petroleum water-accommodated fractions and natural contaminated samples. Aquat Living Resour 17:289–296. doi:10.1051/alr:2004039

    Article  CAS  Google Scholar 

  • Goanvec C, Theron M, Poirier E, Le-Floch S, Laroche J, Nonnotte L, Nonnotte G (2004) Evaluation of chromosomal damage by flow cytometry in turbot (Scophthalmus maximus L.) exposed to fuel oil. Biomarkers 9:435–446. doi:10.1080/13547500400027001

    Article  PubMed  CAS  Google Scholar 

  • Goanvec C, Theron M, Lacoue-labarthe T, Poirier E, Guyomarch J, Le-Floch S, Laroche J, Nonnotte L, Nonnotte G (2008) Flow cytometry for the evaluation of chromosomal damage in turbot Psetta maxima (L.) exposed to the dissolved fraction of heavy fuel oil in sea water: a comparison with classical biomarkers. J Fish Biol 73:395–413. doi:10.1111/j.1095-8649.2008.01901.x

    Article  CAS  Google Scholar 

  • Gonzalez RJ, McDonald DG (1992) The relationship between oxygen consumption and ion loss in a freshwater fish. J Exp Biol 163:317–332

    Google Scholar 

  • Haensly WE, Neff JM, Sharp JR, Morris AC, Bedgood MF, Boem PD (1982) Histopathology of Pleuronectes platessa L. from Aber Wrac’h and Aber Benoit, Brittany, France: long-term effects of the Amoco Cadiz crude oil spill. J Fish Dis 5:365–391. doi:10.1111/j.1365-2761.1982.tb00494.x

    Article  Google Scholar 

  • Howarth RW, Gilbert PM, Burkholder JM, Graneli E, Anderson DM (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. HABs and eutrophication. Harmful Algae 8:14–20. doi:10.1016/j.hal.2008.08.015

    Article  CAS  Google Scholar 

  • Kennedy CJ, Farrell AP (2005) Ion homeostasis and interrenal stress responses in juvenile Pacific Herring, Clupea pallasi, exposed to the water-soluble fraction of crude oil. J Exp Mar Biol Ecol 323:43–56. doi:10.1016/j.jembe.2005.02.021

    Article  CAS  Google Scholar 

  • Khan RA (1999) Study of pearl dace (margariscus margarita) inhabiting a Stillwater pound contaminated with diesel oil. Bull Environ Contam Toxicol 62:638–645. doi:10.1007/s001289900922

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0

    Article  PubMed  CAS  Google Scholar 

  • Lopez E, Leloup-Hatey J, Hardy A, Lallier F, Martelly E, Oudot J, Peignoux-Deville J, Fontaine YA (1981) Modifications histopathologiques et stress chez les anguilles soumises à une exposition prolongée aux hydrocarbures. In: Amoco Cadiz. Conséquences d’une pollution accidentelle par les hydrocarbures. CNEXO, Paris, pp 645–653

  • Mallatt J (1985) Fish structural changes induced by toxicants and other irritants: a statistical review. Can J Fish Aquat Sci 42:630–648. doi:10.1139/f85-083

    Article  CAS  Google Scholar 

  • Martinéz-Goméz C, Fernandez B, Valdés J, Campillo JA, Benedicto J, Sanchéz F, Verthaak AD (2009) Evaluation of three-year monitoring with biomarkers in fish following the prestige oil spill (N Spain). Chemosphere 74:613–620. doi:10.1016/j.chemosphere.2008.10.052

    Article  PubMed  Google Scholar 

  • Martoja R, Martoja-Pierson M (1967) Initiation aux techniques de l’histologie animale. Masson, Paris

    Google Scholar 

  • Metcalfe CD (1998) Toxicopathic responses to organic compounds. In: Leatherland JF, Woo PTK (eds) Fish diseases and disorders non-infectious disorders, vol 2. CAB International, USA, pp 133–162

    Google Scholar 

  • Monod G, Saucier D, Perdu-Durand E, Diallo M, Cravedi JP, Astic L (1994) Biotransformation enzyme activities in the olfactory organ of rainbow trout (Oncorhynchus mykiss). Immunocytochemical localization of cytochrome P4501 A1 and its induction by ß-naphthoflavone. Fish Physiol Biochem 13:433–444. doi:10.1007/BF00004326

    Article  CAS  Google Scholar 

  • Norton WN, Mattie DR, Kearns CL (1985) The cytopathologic effects of specific aromatic hydrocarbons. Am J Pathol 118:387–397

    PubMed  CAS  Google Scholar 

  • Peters LD, Morse HR, Waters R, Livingstone DR (1997) Responses of hepatic cytochrome P450 1A and formation of DNA-adducts in juveniles of Turbot (Scophthalmus maximus L.) exposed to water-borne benzo[a]pyrene. Aquat Toxicol 38:67–82. doi:10.1016/S0166-445X(96)00838-7

    Article  CAS  Google Scholar 

  • Randall DJ, Connell DW, Yang R, Wu SS (1998) Concentrations of persistent lipophilic compounds in fish are determined by exchange across the gills, not through the food chain. Chemosphere 37:1263–1270. doi:10.1016/S0045-6535(98)00124-6

    Article  PubMed  CAS  Google Scholar 

  • Readman JW, Guitart C, Frickers T, Law RJ (2007) An assessment of chemical pollution from the MSC Napoli. Mar Pollut Bull 54:501–503. doi:10.1016/j.marpolbul.2007.03.007

    Article  PubMed  CAS  Google Scholar 

  • Simonato JD, Albinati AC, Martinez CBR (2006) Effects of the water soluble fraction of diesel oil on some functional parameters of the neotropical freshwater fish Prochilodus Lineatus valenciennes. Bull Environ Contam Toxicol 76:505–511. doi:10.1007/s00128-006-0949-3

    Article  PubMed  CAS  Google Scholar 

  • Solangi MA, Overstreet RM (1982) Histopathological changes in two estuarine fishes, Menidia beryllina (Cope) and Trinectes maculatus (Bloch and Schneider), exposed to crude oil and its water-soluble fractions. J Fish Dis 5:13–35. doi:10.1111/j.1365-2761.1982.tb00453.x

    Article  CAS  Google Scholar 

  • Sollid J, Nilsson GE (2006) Plasticity of respiratory structures—adaptive remodeling of fish gills induced by ambient oxygen and temperature. Resp Physiol Neurobi 154:241–251. doi:10.1016/j.resp.2006.02.006

    Article  CAS  Google Scholar 

  • Stehr CM, Myers MS, Johnson LL, Spencer S, Stein JE (2004) Toxicopathic liver lesions in English sole and chemical contaminant exposure in Vancouver Harbour, Canada. Mar Environ Res 57:55–74. doi:10.1016/S0141-1136(03)00060-6

    Article  PubMed  CAS  Google Scholar 

  • Tin T, Fleming ZL, Hughes KA, Ainley DG, Convey P, Moreno CA, Pfeiffer S, Scott J, Snape I (2009) Impacts of local human activities on the Antarctic environment. Antarctic Sci 21:3–33. doi:10.1017/S0954102009001722

    Article  Google Scholar 

  • Tronczynski J, Munschy C, Héas-Moisan K, Guiot N, Truquet I, Olivier N, Men S, Furaut A (2004) Contamination of the Bay of Biscay by polycyclic aromatic hydrocarbons (PAHs) following the T/V “Erika” oil spill. Aquat Living Resour 17:243–259. doi:10.1051/alr:2004042

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Guy Claireaux, Myriam Donzelot and Adrian Moffat for their valuable comments on the manuscript and the French “Ministère de l’Enseignement Supérieur et de la Recherche” for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaël Theron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goanvec, C., Poirier, E., Le-Floch, S. et al. Branchial structure and hydromineral equilibrium in juvenile turbot (Scophthalmus maximus) exposed to heavy fuel oil. Fish Physiol Biochem 37, 363–371 (2011). https://doi.org/10.1007/s10695-010-9435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-010-9435-2

Keywords

Navigation