Skip to main content
Log in

Assessment of spa mineral water quality from Vrnjačka Banja, Serbia: geochemical, bacteriological, and health risk aspects

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The goal of this study is to evaluate the quality of seven natural mineral water sources in the Vrnjačka Banja area used in the treatment of various diseases. The 24 macro- and microelements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES). The results show that element content was within allowed limits of concentration, except for B, As, and Se. The evaluated content of these elements can be associated with geological and anthropogenic factors. The sample S6 contains more than twice the concentration of As, meaning that the use of water from this source should be limited due to the negative impact of this element on human health. The calculated values of weekly (EWI) and oral (OI) intakes as well as the acute hazard quotient (HQA) of selected toxic and potentially toxic elements indicate no health risks to the consumers. The highest hazard quotient (HQL) observed for As in sample S6 (2.0·10−1) demonstrated a significant risk of carcinogenic diseases in long-term consumption from this source. The estimated non-carcinogenic (DIA) and carcinogenic (DIL) dermal intakes with acute (HQA) and long-term (HQL) hazard quotient values for sample S3 show that there is no health risk to those who use the water from this thermal source for bathing. The presence of aerobic mesophilic bacteria at 22 °C and 37 °C in samples S3, S6, and S7 as well as sulphite-reducing Clostridia species in sample S5 were detected, potentially indicating some non-faecal or faecal contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Khatib, I. A., & Arafat, H. A. (2009). Chemical and microbiological quality of desalinated water, groundwater and rain-fed cisterns in the Gaza Strip, Palestine. Desalination, 249(3), 1165–1170. https://doi.org/10.1016/j.desal.2009.01.038.

    Article  CAS  Google Scholar 

  • APHA; AWWA; WPCF (Ed.). (2012). Standard methods for the examination of water and wastewater (22th ed.). Washington: APHA; AWWA; WPCF.

    Google Scholar 

  • Atanacković, N., Dragišić, V., Stojković, J., Papić, P., & Živanović, V. (2013). Hydrochemical characteristics of mine waters from abandoned mining sites in Serbia and their impact on surface water quality. Environmental Science and Pollution Research, 20, 7615–7626. https://doi.org/10.1007/s11356-013-1959-4.

    Article  CAS  Google Scholar 

  • Bencko, V. (1977). Carcinogenic, teratogenic and mutagenic effects of arsenic. Environmental Health Perspectives, 19(1), 179–182. https://doi.org/10.1289/ehp.7719179.

    Article  CAS  Google Scholar 

  • Boe-Hansen, R. (2001). Microbial growth in drinking water distribution systems, Ph.D. thesis, Lyngby, Denmark.

  • Bogdanović, Ž., & Besermenji, S. (2000). The thermal-mineral water of Bačka and the possibilities of its exploitation. Geographica Pannonica, 4, 22–25.

    Article  Google Scholar 

  • Borović, S., Marković, T., Larva, O., Brkić, Ž., & Mraz, V. (2016). Mineral and thermal waters of southeastern Europe. In E. E. Sciences & P. Papić (Eds.), Mineral and thermal waters in the Croatian part of the Pannonian Basin (pp. 31–46). Springer. https://doi.org/10.1007/978-3-319-25379-4.

    Google Scholar 

  • Burić, M., Nikić, Z., & Papić, P. (2016). Mineral and thermal waters of southeastern Europe. In Environmental Earth Sciences, P. Papić (Ed.), Mineral waters of Montenegro (pp. 65–80). Springer. https://doi.org/10.1007/978-3-319-25379-4.

    Google Scholar 

  • Chale, F. M. M. (2002). Trace metal concentrations in water, sediments and fish tissue from Lake Tanganyika. Science of the Total Environment, 299, 115–121. https://doi.org/10.1016/S0048-9697(02)00252-8.

    Article  CAS  Google Scholar 

  • Chapman, D., & Kimstach, V. (1996). Selection of water quality variables. In: Chapman D (ed.), Water quality assessments—a guide to use of biota, sediments and water in environmental monitoring, chapter 3, 2nd edition UNESCO/WHO/UNEP.

  • Craun, G. F., Fraun, M. F., Calderon, R. L., & Beach, M. J. (2006). Waterborne outbreaks reported in the United States. Journal of Water and Health, 4, 19–30. https://doi.org/10.2166/wh.2006.016.

    Article  CAS  Google Scholar 

  • Ćurčić, S., & Čomić, L. M. (2002). A microbiological index in estimation of surface water quality. Hydrobiologia, 489, 219–222.

    Article  Google Scholar 

  • Dragišić, V., & Živanović, V. (2014). General hydrogeology, University of Belgrade, Faculty of Mining and Geology, pp. 1–487, ISBN 978-86-7352-273-9 (in Serbian)

  • Dragišić, V., Živanović, V., Krmpotić, M., Atanacković, N., Tadić, D., Nešković, D., & Magazinović, S. (2012). Hydrogeothermal resources of Vrnjačka Banja, 3rd Spa Congress (with international participation). Vrnjačka Banja, 2012, 148–160 (in Serbian).

    Google Scholar 

  • Drinking Water Standard Methods for Examination of Hygienic Correctness. In: Feliks, R., & Škunca-Milovanović, S. (eds.) (1990). Savezni zavod za zdravstvenu zaštitu & NIP Privredni pregled, Beograd (in Serbian), 134–136.

  • EC - European Commission. (2003). Commission Directive 2003/40/EC of 16 May 2003 establishing the list, concentration limits and labelling requirements for the constituents of natural mineral waters and the conditions for using ozone-enriched air for the treatment of natural mineral waters and spring waters. Official Journal of the European Union, L, 126, 34–39 http://data.europa.eu/eli/dir/2003/40/oj Accessed 05 December 2018.

    Google Scholar 

  • Eftimi, R., & Frashëri A. (2016). Mineral and thermal waters of southeastern Europe. In Environmental Earth Sciences, P. Papić (Ed.), Thermal waters of Albania (pp. 115–130). Springer. https://doi.org/10.1007/978-3-319-25379-4.

    Google Scholar 

  • Fail, A. P., Chapin, E. R., Price, J. C., & Heindel, J. J. (1998). General, reproductive, developmental and endocrine toxicity of boronated compounds. Reproductive Toxicology, 12(1), 1–18.

    Article  CAS  Google Scholar 

  • Florescu, D., Iordache, A. M., Costinel, D., Horj, E., Ionete, R. E., & Culea, M. (2013). Validation procedure for assessing the total organic carbon in water samples. Romanian Journal of Physics, 58, 211–219.

    CAS  Google Scholar 

  • Gorham, E., Underwood, J. K., Martin, F. B., & Ogden, G. J. (1986). Natural and anthropogenic causes of lake acidification in Nova Scotia. Nature, 324(4), 451–453.

    Article  CAS  Google Scholar 

  • Hitchon, B. (1999). Introduction to ground water geochemistry. Alberta: Geoscience Publishing Ltd..

    Google Scholar 

  • Huang, X. (2003). Iron overload and its association with cancer risk in human: evidence for iron as carcinogenic metal. Mutation Research, 53, 153–171.

    Article  Google Scholar 

  • John, D. E., & Rose, J. B. (2005). Review of factors affecting microbial survival in groundwater. Environmental Science and Technology, 39(19), 7345–7356. https://doi.org/10.1021/es047995w.

    Article  CAS  Google Scholar 

  • Kostić, A. Ž., Pantelić, N. Đ., Kaluđerović, L. M., Jonaš, J. P., Dojčinović, B. P., & Popović-Djordjević, J. B. (2016). Physicochemical properties of waters in Southern Banat (Serbia); potential leaching of some trace elements form ground and human health risk. Exposure and Health, 8(2), 227–238. https://doi.org/10.1007/s12403-016-0197-7.

    Article  CAS  Google Scholar 

  • Laboutka, M., & Vylita, B. (1983). Mineral and thermal waters of Western Bohemia. GeoJournal, 7(5), 403–411. https://doi.org/10.1007/BF00194487.

    Article  Google Scholar 

  • Lazić, D. Z., Škundrić, J. V., Vasiljević Lj, C., Sladojević, S. G., & Blagojević, D. D. (2011). Characterization of mineral water from vitinički kiseljak and kozluk springs. Hemijska industrija, 65(3), 263–270. https://doi.org/10.2298/HEMIND101220017L.

    Article  Google Scholar 

  • Lin, K., Lu, S., Wang, J., & Yang, Y. (2015). The arsenic contamination of rice in Guangdong Province, the most economically dynamic provinces of China: arsenic speciation and its potential health risk. Environmental Geochemistry and Health, 3, 353–361. https://doi.org/10.1007/s10653-014-9652-1.

    Article  CAS  Google Scholar 

  • Mehdi, Y., Hornick, J.-L., Istasse, L., & Dufrasne, I. (2013). Selenium in the environment, metabolism and involvement in body functions. Molecules, 18, 3292–3311. https://doi.org/10.3390/molecules18033292.

    Article  CAS  Google Scholar 

  • Milojković, J. V., Popović-Đorđević, J. B., Pezo, L. L., Brčeski, I. D., Kostić, A. Ž., Milošević, V., & Stojanović, M. D. (2018). Applying multi-criteria analysis for preliminary assessment of the properties of alginate immobilized Myriophyllum spicatum in lake water. Water Research, 141, 163–171. https://doi.org/10.1016/j.watres.2018.05.014.

    Article  CAS  Google Scholar 

  • Momot, O., & Synzynys, B. (2005). Toxic aluminum and heavy metals in groundwater of Middle Russia: health risk assessment. International Journal of Environmental Research and Public Health, 2(2), 214–218. https://doi.org/10.3390/ijerph2005020003.

    Article  CAS  Google Scholar 

  • Nesimović, E., Huremović, J., Gojak-Salimović, S., Avdić, N., Žero, S., & Nesimović, E. (2017). Chemical characterisation of the spring waters used for health care, Guber, Srebrenica, Bosnia and Herzegovina. Bulletin of the Chemists and Technologists of Bosnia and Herzegovina, 49, 43–48 http://www.pmf.unsa.ba/hemija/glasnik/files/Issue%2049%20new/5-43-48-Huremovi.pdf Accessed 05 December 2018.

    Google Scholar 

  • Nnorom, I. C., Ewuzie, U., & Eze, S. O. (2019). Multivariate statistical approach and water quality assessment of natural springs and other drinking water sources in Southeastern Nigeria. Helyion, 5, e01123. https://doi.org/10.1016/j.heliyon.2019.e01123.

    Article  Google Scholar 

  • Official Gazette (2005). The regulation about quality and other demands for natural mineral water, spring and bottle water, 53/2005 (In Serbian).

  • Official Gazette (2008): The regulation on hygienic quality of drinking water 42/1998 and 44/1999, (In Serbian).

  • Official Gazette (2013): The regulation on quality and other requirements for natural mineral water, natural spring water and table water, 43/2013 (in Serbian).

  • Pantelić, N., Dramićanin, A. M., Milovanović, D. B., Popović-Đorđević, J. B., & Kostić, A. Ž. (2017). Evaluation of the quality of drinking water in Rasina District, Serbia: physicochemical and bacteriological viewpoint. Romanian Journal of Physics, 62, 818.

    Google Scholar 

  • Petrović, T., Zlokolica-Mandić, M., Veljković, N., & Vidojević, D. (2010). Hydrogeological conditions for the forming and quality of mineral waters in Serbia. Journal of Geochemical Exploration, 107, 373–381. https://doi.org/10.1016/j.gexplo.2010.07.009.

    Article  CAS  Google Scholar 

  • Protić, D. (1995). Mineral and thermal waters of Serbia. Belgrade, Geologycal Institute of Serbia: (in Serbian).

  • Rajiv, P., Salam, H. A., Kamaraj, M., Sivaraj, R., & Sankar, A. (2012). Physico chemical and microbial analysis of different river waters in western Tamil Nadu, India. Research Journal of Environmental Sciences, 1(1), 2–6.

    Google Scholar 

  • Rajković, M. B., Sredović, I. D., Račović, M. B., & Stojanović, M. D. (2012). Analysis of quality mineral water of Serbia: region Arandjelovac. Journal of Water Resource and Protection, 4, 783–794. https://doi.org/10.4236/jwarp.2012.49090.

    Article  CAS  Google Scholar 

  • Reimann, C., & Birke, M. (2010). Geochemistry of European bottled water. Stuttgart: Borntraeger Science Publishers ISBN 978-3-443-01067-6.

    Google Scholar 

  • Šaraba, V., Popović, S., Krunić, O., Subakov Simić, G., Kljajić, Ž., & Lazić, M. (2017). Mineral waters of Serbia and development of phototrophic microbial communities near points of emergence and on wellheads. Acta Carsologica, 46, 295–316. https://doi.org/10.3986/ac.v46i2-3.4961.

    Article  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568. https://doi.org/10.1016/S0883-2927(02)00018-5.

    Article  CAS  Google Scholar 

  • Stojković, J. S. (2013). Hydrogeothermal valorization of essential microelements in mineral waters of Serbia (pp. 1–216). Belgrade: Faculty of Mining and Geology (in Serbian).

    Google Scholar 

  • Su, S., Zhi, J., Lou, L., Huang, F., Chen, X., & Wu, J. (2011). Spatio-temporal patterns and source apportionment of pollution in Qiantang river (China) using neural-based modeling and multivariate statistical techniques. Physics and Chemistry of the Earth, 36, 379–386. https://doi.org/10.1016/j.pce.2010.03.021.

    Article  Google Scholar 

  • Todorović, M., Štrbački, J., Ćuk, M., Andrijašević, J., Šišović, J., & Papić, P. (2016). Mineral and thermal waters of Serbia: multivariate statistical approach to hydrochemical characterization (Pp. 81-95), chapter in: Mineral and thermal waters of southeastern Europe (Environmental Earth SciencesSeries, Editor: James W. LaMoreaux), Springer International Publishing, Editor: Petar Papić, Pp. 1–171; ISBN: 978-3-319-25377-0 (Print); 978-3-319-25379-4 (Online); https://doi.org/10.1007/978-3-319-25379-4

    Google Scholar 

  • US EPA - United States Environmental Protection Agency (2004). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment). EPA/540/R/99/005, July 2004, Washington DC, USA. https://www.epa.gov/sites/production/files/2015-09/documents/part_e_final_revision_10-03-07.pdf Accessed 05 December 2018

  • US EPA - United States Environmental Protection Agency (2018). 2018 Edition of the Drinking Water Standards and Health Advisories Tables. EPA 822-F-18-001, March 2018, Washington DC, USA. https://www.epa.gov/sites/production/files/2018-03/documents/dwtable2018.pdf Accessed 05 December 2018

  • van der Aa, M. (2003). Classification of mineral water types and comparison with drinking water standards. Environmental Geology, 44, 554–563. https://doi.org/10.1007/s00254-003-0791-4.

    Article  CAS  Google Scholar 

  • van der Kooij, L. A., Van der Meent, D., Van Leeuwen, C. J., & Bruggeman, W. A. (1991). Deriving quality criteria for water and sediment from the results of aquatic toxicity tests and product standards. Water Research, 2, 697–705. https://doi.org/10.1016/0043-1354(91)90045-R.

    Article  Google Scholar 

  • van Wirdum, G. (1991). Vegetation and hydrology of floating rich-fens. Maastricht: Datawyse ISBN 90-5291-045-6.

    Google Scholar 

  • Wang, J. (2018). Statistical study on distribution of multiple dissolved elements and a water quality assessment around a simulated stackable fly ash. Ecotoxicology and Environmental Safety, 159, 46–55. https://doi.org/10.1016/j.ecoenv.2018.04.057.

    Article  CAS  Google Scholar 

  • Waters-Doughty, H. (1924). Mohr’s method for the determination of silver and halogens in other then neutral solutions. Journal of the American Chemical Society, 46(12), 2707–2709. https://doi.org/10.1021/ja01677a014.

    Article  Google Scholar 

  • WHO - World Health Organization (2008). Guidelines for drinking water quality 3rd ed., incorporating the first and second addenda, vol. 1, Recommendations, WHO Press Geneva.

  • WHO - World Health Organization (2010). Strontium and strontium compounds, Concise International Chemical Assessment Document 77, WHO Press Geneva. https://apps.who.int/iris/handle/10665/44280 Accessed 05 December 2018

  • WHO - World Health Organization (2017). Guidelines for drinking water quality 4th ed., incorporating the first addenum, WHO Press Geneva. https://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/ Accessed 05 December 2018

  • Yu, R. F., Chen, H. W., Cheng, W. P., & Shen, Y. C. (2009). Application of pH-ORP titration to dynamically control the chlorination and dechlorination for wastewater reclamation. Desalination, 244, 164–176. https://doi.org/10.1016/j.desal.2008.05.021.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant Nos. TR31003, III43004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojša Đ. Pantelić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pantelić, N.Đ., Jaćimović, S., Štrbački, J. et al. Assessment of spa mineral water quality from Vrnjačka Banja, Serbia: geochemical, bacteriological, and health risk aspects. Environ Monit Assess 191, 648 (2019). https://doi.org/10.1007/s10661-019-7848-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7848-7

Keywords

Navigation