Skip to main content
Log in

Arsenic-induced genotoxicity in Nile tilapia (Orechromis niloticus); the role of Spirulina platensis extract

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Arsenic (As) is one of the most relevant environmental global single substance toxicants that have long been regarded as a carcinogenic and genotoxic potential. In this respect, we evaluated the cytogenetic effect of arsenic exposure in Nile tilapia (Oreochromis niloticus), in terms of erythrocyte alteration, apoptosis, and induction of micronuclei. Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phytoantioxidant, anti-inflammatory, and anti-cancerous properties supplementation. The protective role of Spirulina as supplementary feeds was studied in Nile tilapia (O. niloticus) against arsenic-induced cytogenotoxicity. Four groups were assigned as control group (no SP or As), As group (exposed to water-born As in the form of NaAsO2 at 7 ppm), SP1 (SP at 7.5 % + As at the same level of exposure), and SP2 (SP at 10 % + As at the same level of exposure). As-treated group had a significant increase in all cytogenetic analyses including erythrocyte alteration, apoptosis, and induction of micronuclei after 2 weeks with continuous increase in response after 3 weeks. The combined treatment of Spirulina at two different concentrations of 7.5 and 10 % had significantly declined the induction of erythrocyte alteration, apoptosis, and micronuclei formation induced by arsenic intoxication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad, S., Kitchin, K. T., & Cullen, W. R. (2000). Arsenic species that cause release of iron from ferritin and generation of activated oxygen. Archives of Biochemistry and Biophysics, 382, 195–202.

    Article  CAS  Google Scholar 

  • Ahmed, K., Akhand, A. A., Hasan, M., Islam, M., & Hasan, A. (2008). Toxicity of arsenic (sodium arsenite) to fresh water spotted snakehead Channa punctatus (Bloch) on cellular death and DNA content. American Eurasian Journal of Agricultural and Environmental Science, 4, 18–22.

    Google Scholar 

  • Ahmed, M. K., Habibullah-Al-Mamun, M., Hossain, M. A., Arif, M., Parvin, E., Akter, M. S., Khan, M. S., & Islam, M. M. (2011). Assessing the genotoxic potentials of arsenic in tilapia (Oreochromis mossambicus) using alkaline comet assay and micronucleus test. Chemosphere, 84, 143–149.

    Article  CAS  Google Scholar 

  • Akter, M., Ahmed, M., Akhand, A., Ahsan, N., Islam, M., & Khan, M. (2009). Arsenic and mercury induce death of Anabas testudineus (Bloch) involving fragmentation of chromosomal DNA. Terrestrial and Aquatic Environmental Toxicology, 3, 42–47.

    Google Scholar 

  • Al-Sabti, K., & Metcalfe, C. D. (1995). Fish micronuclei for assessing genotoxicity in water. Mutation Research, Genetic Toxicology, 343, 121–135.

    Article  CAS  Google Scholar 

  • Ayllon, F., & Garcia-Vazquez, E. (2000). Induction of micronuclei and other nuclear abnormalities in European minnow (Phoxinus phoxinus) and mollie (Poecilia latipinna): an assessment of the fish micronucleus test. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 467, 177–186.

    Article  CAS  Google Scholar 

  • Barbosa, J., Cabral, T., Ferreira, D., Agnez-Lima, L., & Batistuzzo de Medeiros, S. (2010). Genotoxicity assessment in aquatic environment impacted by the presence of heavy metals. Ecotoxicology and Environmental Safety, 73, 320–325.

    Article  CAS  Google Scholar 

  • Bolognesi, C., Perrone, E., Roggieri, P., Pampanin, D. M., & Sciutto, A. (2006). Assessment of micronuclei induction in peripheral erythrocytes of fish exposed to xenobiotics under controlled conditions. Aquatic Toxicology, 78, S93–S98.

    Article  CAS  Google Scholar 

  • Cantrell, S. M., Joy-Schlezinger, J., Stegeman, J. J., Tillitt, D. E., & Hannink, M. (1998). Correlation of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced apoptotic cell death in the embryonic vasculature with embryotoxicity. Toxicology and Applied Pharmacology, 148, 24–34.

    Article  CAS  Google Scholar 

  • Chen, Q. M., Bartholomew, J. C., Campisi, J., Acosta, M., Reagan, J. D., & Ames, B. N. (1998). Molecular analysis of H2O2-induced senescent-like growth arrest in normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication. Biochemistry Journal, 332, 43–50.

    Article  CAS  Google Scholar 

  • Darzynkiewicz, Z. (1990). Differential staining of DNA and RNA in intact cells and isolated cell nuclei with acridine orange. Methods in Cell Biology, 33, 285–298.

    Article  CAS  Google Scholar 

  • Datta, S., Saha, D. R., Ghosh, D., Majumdar, T., Bhattacharya, S., & Mazumder, S. (2007). Sub-lethal concentration of arsenic interferes with the proliferation of hepatocytes and induces in vivo apoptosis in (Clarias batrachus) L. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 145, 339–349.

    Google Scholar 

  • Deng, R., & Chow, T. J. (2010). Hypolipidemic, antioxidant, and antiinflammatory activities of microalgae Spirulina. Cardiovascular Therapeutics, 28, e33–e45.

    Article  CAS  Google Scholar 

  • Dural, M., Göksu, M., & Özak, A. A. (2007). Investigation of heavy metal levels in economically important fish species captured from the Tuzla lagoon. Food Chemistry, 102, 415–421.

    Article  CAS  Google Scholar 

  • Frechet, M., Canitrot, Y., Cazaux, C., & Hoffmann, J. S. (2001). DNA polymerase beta imbalance increases apoptosis and mutagenesis induced by oxidative stress. FEBS Letters, 505, 229–232.

    Article  CAS  Google Scholar 

  • Galindo, T. P., & Moreira, L. M. (2009). Evaluation of genotoxicity using the micronucleus assay and nuclear abnormalities in the tropical sea fish Bathygobius soporator (Valenciennes, 1837) (Teleostei, Gobiidae). Genetics and Molecular Biology, 32, 394–398.

    Article  CAS  Google Scholar 

  • Gebel, T. W. (2001). Genotoxicity of arsenical compounds. International Journal of Hygiene and Environmental Health, 203, 249–262.

    Article  CAS  Google Scholar 

  • Grisolia, C. K. (2002). A comparison between mouse and fish micronucleus test using cyclophosphamide, mitomycin C and various pesticides. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 518, 145–150.

    Article  CAS  Google Scholar 

  • Güroy, B., Şahin, İ., Mantoğlu, S., & Kayalı, S. (2012). Spirulina as a natural carotenoid source on growth, pigmentation and reproductive performance of yellow tail cichlid Pseudotropheus acei. Aquaculture International, 20, 869–878.

    Article  Google Scholar 

  • Hei, T. K., Liu, S. X., & Waldren, C. (1998). Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proceedings of the National Academy of Sciences, 95, 8103–8107.

    Article  CAS  Google Scholar 

  • Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 133, 1–16.

    Article  CAS  Google Scholar 

  • Hwang, P., & Tsai, Y. (1993). Effects of arsenic on osmoregulation in the tilapia Oreochromis mossambicus reared in seawater. Marine Biology, 117, 551–558.

    Article  CAS  Google Scholar 

  • Iarmarcovai, G., Bonassi, S., Botta, A., Baan, R., & Orsiere, T. (2008). Genetic polymorphisms and micronucleus formation: a review of the literature. Mutation Research, Reviews in Mutation Research, 658, 215–233.

    Article  CAS  Google Scholar 

  • Ibrahem, M. D., Mohamed, M. F., & Ibrahim, M. A. (2013). The role of Spirulina platensis (Arthrospira platensis) in growth and immunity of Nile tilapia (Oreochromis niloticus) and its resistance to bacterial infection. Journal of Agricultural Science, 5, 109–117.

    Article  Google Scholar 

  • James, R., (2010). Effect of dietary supplementation of spirulina on growth and phosphatase activity in copper-exposed carp (Labeo rohita).

  • James, R., Sampath, K., Nagarajan, R., Vellaisamy, P., & Manikandan, M. M. (2009). Effect of dietary Spirulina on reduction of copper toxicity and improvement of growth, blood parameters and phosphatases activities in carp, Cirrhinus mrigala (Hamilton, 1822). Indian Journal of Experimental Biology, 47, 754.

    CAS  Google Scholar 

  • Khan, Z., Bhadouria, P., & Bisen, P. (2005). Nutritional and therapeutic potential of Spirulina. Current Pharmaceutical Biotechnology, 6, 373–379.

    Article  CAS  Google Scholar 

  • Kumar, A., Kesari, V. P., & Khan, P. K. (2013). Fish micronucleus assay to assess genotoxic potential of arsenic at its guideline exposure in aquatic environment. BioMetals, 26(2), 337–346.

  • Lage, C. R., Nayak, A., & Kim, C. H. (2006). Arsenic ecotoxicology and innate immunity. Integrative and Comparative Biology, 46, 1040–1054.

    Article  CAS  Google Scholar 

  • Linjawi, S.A., (2011). Protective effect of spirulina against mitomycin C-induced genotoxic damage in male rats. Journal of American Science 7.

  • Lushchak, V. I. (2011). Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology, 101, 13–30.

    Article  CAS  Google Scholar 

  • Mathew, B., Sankaranarayanan, R., Nair, P. P., Varghese, C., Somanathan, T., Amma, B. P., Amma, N. S., & Nair, M. K. (1995). Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutrition and Cancer, 24(2), 197–202.

    Article  CAS  Google Scholar 

  • Mekkawy, I. A., Mahmoud, U. M., & Sayed, A. E.-D. H. (2011). Effects of 4-nonylphenol on blood cells of the African catfish (Clarias gariepinus) (Burchell, 1822). Tissue and Cell, 43, 223–229.

    Article  CAS  Google Scholar 

  • Mokhtar, M. B., Aris, A. Z., Munusamy, V., & Praveena, S. M. (2009). Assessment level of heavy metals in Penaeus monodon and Oreochromis spp. in selected aquaculture ponds of high densities development area. European Journal of Scientific Research, 30, 348–360.

    Google Scholar 

  • Nwani, C., Lakra, W., Nagpure, N., Kumar, R., Kushwaha, B., & Srivastava, S. (2010). Mutagenic and genotoxic effects of carbosulfan in freshwater fish (Channa punctatus) (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food and Chemical Toxicology, 48, 202–208.

    Article  CAS  Google Scholar 

  • Pascoe, S., & Gatehouse, D. (1986). The use of a simple haematoxylin and eosin staining procedure to demonstrate micronuclei within rodent bone marrow. Mutation Resarch, 164, 237–243.

  • Ramírez, O. A. B., & García, F. P. (2005). Genotoxic damage in zebra fish (Danio rerio) by arsenic in waters from Zimapan, Hidalgo, Mexico. Mutagenesis, 20, 291–295.

    Article  Google Scholar 

  • Roy, S., & Bhattacharya, S. (2006). Arsenic-induced histopathology and synthesis of stress proteins in liver and kidney of Channa punctatus. Ecotoxicology and Environmental Safety, 65, 218–229.

    Article  CAS  Google Scholar 

  • Sánchez, M., Bernal-Castillo, J., Rozo, C., Rodríguez, I., (2003). Spirulina (Arthrospira): an edible microorganism: a review.

  • Sawhney, A., & Johal, M. (2000). Erythrocyte alterations induced by malathion in Channa punctatus (Bloch). Bulletin of Environmental Contamination and Toxicology, 64, 398–405.

    Article  CAS  Google Scholar 

  • Sayed, A. H., & Fawzy, M. A. (2014). Effect of dietary supplementation of Spirulina platensis on the growth and haematology of the Catfish Clarias gariepinus. Journal of Advances in Biology, 5, 625–635.

    Google Scholar 

  • Sayed, A. H., Oda, S., & Mitani, H. (2014). Nuclear and cytoplasmic changes in erythrocytes of p53-deficient medaka fish (Oryzias latipes) after exposure to gamma-radiation. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 771, 64–70.

    Article  CAS  Google Scholar 

  • Schmidt, W. (1975). The micronucleus test. Mutation Research, 31, 9–15.

    Article  Google Scholar 

  • Seok, S.-H., Baek, M.-W., Lee, H.-Y., Kim, D.-J., Na, Y.-R., Noh, K.-J., Park, S.-H., Lee, H.-K., Lee, B.-H., & Ryu, D.-Y. (2007). Arsenite-induced apoptosis is prevented by antioxidants in zebrafish liver cell line. Toxicology in Vitro, 21, 870–877.

    Article  CAS  Google Scholar 

  • Sharma, K., Upreti, N., Sharma, S., & Sharma, S. (2012). Protective effect of Spirulina and tamarind fruit pulp diet supplement in fish (Gambusia affinis Baird & Girard) exposed to sublethal concentration of fluoride, aluminum and aluminum fluoride. Indian Journal of Experimental Biology, 50(12), 897–903.

  • Vuyyuri, S. B., Ishaq, M., Kuppala, D., Grover, P., & Ahuja, Y. (2006). Evaluation of micronucleus frequencies and DNA damage in glass workers exposed to arsenic. Environmental and Molecular Mutagenesis, 47, 562–570.

    Article  CAS  Google Scholar 

  • Wang, Y.-C., Chaung, R.-H., & Tung, L.-C. (2004). Comparison of the cytotoxicity induced by different exposure to sodium arsenite in two fish cell lines. Aquatic Toxicology, 69, 67–79.

    Article  CAS  Google Scholar 

  • Yadav, K. K., & Trivedi, S. P. (2009). Sublethal exposure of heavy metals induces micronuclei in fish, (Channa punctata). Chemosphere, 77, 1495–1500.

    Article  CAS  Google Scholar 

  • Zhang, T., Wang, S., Hong, L., Wang, X., & Qi, Q. (2003). Arsenic trioxide induces apoptosis of rat hepatocellular carcinoma cells in vivo. Journal of Experimental & Clinical Cancer Research, 22, 61–68.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa El-Din H. Sayed.

Ethics declarations

Ethical statement

All experiments were carried out in accordance with the Egyptian laws and University guidelines for the care of experimental animals. The protocol for this work was described in compliance with the guidelines of the ethical committee of Assiut University and Mansoura University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, A.ED.H., Elbaghdady, H.A.M. & Zahran, E. Arsenic-induced genotoxicity in Nile tilapia (Orechromis niloticus); the role of Spirulina platensis extract. Environ Monit Assess 187, 751 (2015). https://doi.org/10.1007/s10661-015-4983-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4983-7

Keywords

Navigation