Skip to main content
Log in

Assessment of the bioavailability of cadmium in Jamaican soils

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Extraordinary geogenic concentrations of cadmium (Cd) have been reported for some Jamaican soils. However, the bioavailability of the metal in these soils remains unknown. Here, the bioavailability of Cd in selected Jamaican soils was investigated through the determination of total and sequentially extractable concentrations in paired soil–plant (yam; Dioscorea sp.) samples (n = 24), using neutron activation analysis and atomic absorption spectroscopy as primary analytical techniques. Our results indicate that total soil Cd varied widely (2.2–148.7 mg kg−1), and on average, total extractable Cd accounted for ~55 % of the total soil Cd. The exchangeable and oxidizable species averaged 1.5 and 6.4 % of the total Cd, respectively, and, based on Spearman analysis, are the best predictors of yam Cd. There is also good evidence to suggest that variation in the bioavailability of the metal is in part controlled by the geochemical characteristics of the soils analyzed and is best explained by pH, cation exchange capacity (CEC) and organic matter content (% LOI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed, A., & Razek, A.E. (2013). The mobility and speciation of lead and cadmium in Bahr El Baqar region, Egypt. Journal of Environmental Chemical Engineering.doi: 10.1016/j.jece.2013.11.006.

  • Aydinalp, C. (2003). Some important properties and classification of mollisols in northwestern Turkey. Journal of Central European Agriculture, 4, 221–224.

    Google Scholar 

  • Aydinalp, C., & Marinova, S. (2003). Distribution and forms of heavy metals in some agricultural soils. Polish Journal of Environmental Studies, 12, 629–633.

    CAS  Google Scholar 

  • Carrow, R. N., Waddington, D. V., & Rieke, P. E. (2001). Turfgrass soil fertility and chemical problems: assessment and management. New Jersey: John Wiley & Sons Inc.

    Google Scholar 

  • Charriau, A., Lesven, L., Gao, Y., Leermakers, M., Baeyens, W., Ouddane, B., & Billon, G. (2011). Trace metal behaviour in riverine sediments: role of organic matter and sulfides. Applied Geochemistry, 26, 80–90.

    Article  CAS  Google Scholar 

  • Christensen, T. (1989). Cadmium soil sorption at low concentrations: VIII, correlation with soil parameters. Water, Air, and Soil Pollution, 44, 71–82.

    Article  CAS  Google Scholar 

  • Connolloy, E. L., Fett, J. P., & Guerinot, M. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. The Plant Cell, 14, 1347–1357.

    Article  Google Scholar 

  • Garrett, R., Porter, A., & Hunt, P. (2010). An occurrence of cadmiferous phosphorite soil concretions in Jamaica. Applied Geochemistry, 25, 1047–1055.

    Article  CAS  Google Scholar 

  • Grant, C., Lalor, G., & Vutchkov, M. (1998). Neutron activation analysis of cadmium in Jamaican soils. Journal of Radioanalytical and Nuclear Chemistry, 237, 109–112.

    Article  CAS  Google Scholar 

  • Gray, C. W., McLaren, R. G., & Shiowantana, J. (2003). The determination of labile cadmium in some biosolids-amended soils by isotope dilution plasma mass spectrometry. Australian Journal of Soil Research, 41, 589–597.

    Article  CAS  Google Scholar 

  • Gupta, S., & Chen, K. (1975). Partitioning of trace metals in selective chemical fractions of nearshore sediments. Environmental Letters, 10, 129–158.

    Article  CAS  Google Scholar 

  • Heiri, O., Lotter, A., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.

    Article  Google Scholar 

  • Hermann, R., & Neumann-Mahlkau, P. (1985). The mobility of zinc, cadmium, copper, lead, iron and arsenic in ground water as a function of redox potential and pH. Science of the Total Environment, 43, 1–12.

    Article  CAS  Google Scholar 

  • Hough, R. L., Tye, A. M., Young, S. D., Crout, N. M. J., & Mcgrath, S. P. (2005). Evaluating the free ion activity model of metal uptake by higher plants using perennial rys grass (Lolium perenne L.). Plant and Soil, 270, 1–12.

    Article  CAS  Google Scholar 

  • JAMPRO (2011). Investing in Jamaica’s agricultural industries. http://www.jamaicatradeandinvest.org/documents/agriculture%20brochureAug2012.pdf. Accessed 24 September 2013.

  • Jaklová Dytrtová, J., Šestáková, I., Kakl, M., & Navrátil, T. (2009). Electrochemical detection of cadmium and lead complexes with low molecular weight organic acids. Electroanalysis, 21, 573–579.

    Article  Google Scholar 

  • Jaradat, Q., Massadeh, A., Zaitoun, M., & Maitah, B. (2006). Fractionation and sequential extraction of heavy metals in the soil of scrapyard of discarded vehicles. Environmental Monitoring and Assessment, 112, 197–210.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Florida: CRC Press.

    Google Scholar 

  • Kim, K., Owens, G., & Naidu, R. (2010). Effect of root-induced chemical changes on dynamics and plant uptake of heavy metals in rhizosphere soils. Pedosphere, 20, 494–504.

    Article  Google Scholar 

  • Krishnamurti, G. S. R., Megharaj, M., & Naidu, R. (2004). Bioavailability of cadmium-organic complexes to soil alga—an exception to the free ion model. Journal of Agriculture and Food Chemistry, 52, 3894–3899.

    Article  CAS  Google Scholar 

  • Lalor, G. C. (1995). A geochemical atlas of Jamaica. Kingston: Canoe Press.

    Google Scholar 

  • Lalor, G. C. (2008). Review of cadmium transfers from soil to humans and its health effects in the Jamaican environment. Science of the Total Environment, 400, 162–172.

    Article  CAS  Google Scholar 

  • Landon, J. R. (Ed.). (1991). Booker tropical soil manual: a handbook for soil survey and agricultural land evaluation in the tropics and sub-tropics. New York: John Wiley & Sons, Inc.

    Google Scholar 

  • Legrand, P., Turmel, M.-C., Suave, S., & Courchesne, F. (2005). Speciation and bioavailability of trace metals (Cd, Cu, Ni, Pb, Zn) in the rhizosphere of contaminated soils. In P. Huang et al. (Eds.), Biogeochemistry of trace elements in the rhizosphere (pp. 261–299). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Li, X., & Thorton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.

    Article  CAS  Google Scholar 

  • Li, X., Poon, C., & Liu, P. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368.

    Article  CAS  Google Scholar 

  • Luo, X.-S., Yu, S., & Li, X.-D. (2012). The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Applied Geochemistry, 27, 995–1004.

    Article  CAS  Google Scholar 

  • Ma, L., & Rao, G. (1997). Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal of Environment Quality, 26, 259–264.

    Article  CAS  Google Scholar 

  • Mäkelä, M., Pöykiö, R., Watkins, G., Hannu, N., & Dahl, O. (2011). Approach to investigate the mobility and availability of trace elements (As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn, and Hg) from a solid residue matrix designed for soil amendment. World Academy of Science, Engineering and Technology, 55, 502–507.

    Google Scholar 

  • McBride, M. B. (2002). Cadmium uptake by crops estimated from soil total Cd and pH. Soil Science, 167, 62–67.

    Article  CAS  Google Scholar 

  • McLaughlin, M. J., Zarcinas, B. A., Stephens, D. P., & Cook, N. (2000). Soil testing for heavy metals. Communications in Soil Science and Plant Analysis, 31, 1661–1700.

    Article  CAS  Google Scholar 

  • Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145, 121–130.

    Article  CAS  Google Scholar 

  • Nogueira, T. A. R., Melo, W. J., Fonseca, I. M., Marcussi, S. A., Melo, G. M. P., & Marques, M. O. (2010). Fractionation of Zn, Cd, and Pb in a tropical soil after nine-year sewage sludge applications. Pedosphere, 20, 545–556.

    Article  CAS  Google Scholar 

  • Nolan, A., Lombi, E., & McLaughlin, M. (2003). Metal bioaccumulation and toxicity in soils—why bother with speciation? Australian Journal of Chemistry, 56, 77–91.

    Article  CAS  Google Scholar 

  • Okoro, H., Fatoki, O., Adekola, F., Ximba, B., & Snyman, R. (2012). A review of sequential extraction procedures for heavy metals speciation in soil and sediments, doi:10.4172/scientificreports.181.

  • Øygard, J. K., Gjengedal, E., & Mobbs, H. J. (2008). Trace metal exposure in the environment from MSW landfill leachate sediments measured a sequential extraction technique. Journal of Hazardous Materials, 153, 751–758.

    Article  Google Scholar 

  • Parisová, M., Navrátil, T., Šestáková, I., Jaklová Dytrtová, J., & Mareček, V. (2013). Influence of low molecular weight organic acids on cadmium and copper ions across model phospholipid membranes. International Journal of Electrochemical Science, 8, 27–44.

    Google Scholar 

  • Peterson, P. J., & Alloway, B. J. (1979). Cadmium in soils and vegetation. In M. Webb (Ed.), The Chemistry, Biochemistry and Biology of Cadmium (pp. 46–92). Amsterdam: Elsevier/North-Holland Biomedical Press.

    Google Scholar 

  • Pueyo, M., López-Sánchez, J., & Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504, 217–226.

    Article  CAS  Google Scholar 

  • Ross, D.S., & Ketterings, Q. (2011). Recommended methods for determining soil cation exchange capacity. http://www.extension.udel.edu/lawngarden/files/2012/10/CHAP9.pdf. Accessed 24 September 2013.

  • Shahid, M., Pinelli, E., & Dumat, C. (2012). Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. Journal of Hazardous Materials, 219, 1–12.

    Article  Google Scholar 

  • Song, Y., Swift, S., Swedlund, P. J., & Singhal, N. (2011). Cadmium (II) distribution in complex aquatic systems containing ferrihydrite, bacteria and an organic ligand: the effect of bioactivity. Applied Geochemistry, 26, 898–906.

    Article  CAS  Google Scholar 

  • Spence, A., & Robinson, C. (2013). Spectro-chemical analysis of the speciation of cadmium montmorillonite in the presence of soil microbial biomass. Procedia Environmental Sciences, 18, 114–126.

    Article  CAS  Google Scholar 

  • Stacey, S., Merrington, G., & McLaughlin, M. J. (2001). The effect of aging biosolids on the availability of cadmium and zinc in soil. European Journal of Soil Sciences, 52, 313–321.

    Article  CAS  Google Scholar 

  • Sterckeman, T., Carignan, J., Srayeddin, I., Baize, D., & Cloquet, C. (2009). Availability of soil cadmium using stable and radioactive isotopes dilution. Geoderma, 153, 372–378.

    Article  CAS  Google Scholar 

  • Strobel, B. W. (2001). Influence of vegetation on low-molecular-weight carboxylic acids in soil solution—a review. Geoderma, 99, 169–198.

    Article  CAS  Google Scholar 

  • Tessier, A., Campbell, P., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Ure, A., Quevauviller, V., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in solids and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental and Analytical Chemistry, 51, 135–151.

    Article  CAS  Google Scholar 

  • van Aarle, I. M., Söderström, B., & Olsson, A. (2003). Growth and interactions of arbuscular mycorrhizal fungi in soils from limestone and acid rock habitats. Soil Biology and Biology and Biochemistry, 35, 1557–1564.

    Article  Google Scholar 

  • Violante, A., & Pigna, M. (2002). Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Science Society of America Journal, 66, 1788–1796.

    Article  CAS  Google Scholar 

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition, 10, 268–292.

    Article  Google Scholar 

  • Waldron, H. A. (Ed.). (1980). Metals in the environment. London: Academic Press Inc.

    Google Scholar 

  • Weiner, R. F., & Matthews, R. A. (2003). Environmental Engineering (4th ed.). Oxford: Butterworth Heinemann.

    Google Scholar 

  • Xie, H., Huang, Z.-Y., Cao, Y.-L., Cai, C., Zeng, X.-C., & Li, J. (2012). Labile pools of Pb vegetable-growing soils investigated by an isotope dilution method and its influence on soil pH. Journal of Environmental Monitoring. doi: 10.1039/c2em30143a.

  • Yang, S., Zhou, D., Yu, H., Wei, R., & Pan, B. (2013). Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China. Environmental Pollution, 177, 64–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the University of the West Indies, Mona, and the Government of Jamaica through the Ministry of Science Technology Energy and Mining for vital financial support. We are indebted to Taniesha Edwards (Department of Geography and Geology), John Preston and McKeane Thomas (ICENS) for spatial data manipulation of Fig. 1. The anonymous reviewers are acknowledged for their constructive suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Spence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spence, A., Hanson, R.E., Grant, C.N. et al. Assessment of the bioavailability of cadmium in Jamaican soils. Environ Monit Assess 186, 4591–4603 (2014). https://doi.org/10.1007/s10661-014-3722-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-014-3722-9

Keywords

Navigation