Skip to main content
Log in

Ultrastructure of the epiphytic sooty mold Capnodium and surface-colonized walnut leaves

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Cellular aspects of sooty mold on walnut leaves were investigated by using light and electron microscopy. A black coating developed on the adaxial surface of walnut leaves. No infestations were found on the abaxial leaf surface with peltate glandular trichomes. Light microscopy showed that fungal complexes from the leaf surface were composed of brown conidia and hyphae. Conidia, with longitudinal and transverse septa, were variable in length ranging from 10 to 30 μm, and commonly found in clusters, forming microsclerotia. Neither epidermal penetration nor hyphal entrance to host tissues was observed. Based on their morphological characteristics, the fungal complexes were assumed to be Capnodium species. An electron-dense melanized layer was present on the cell wall of multi-celled conidia. Concentric bodies in the fungal cytoplasm had an electron-translucent core surrounded by an electron-dense margin with a fibrillar sheath. Chloroplasts without starch granules in the palisade mesophyll cells of sooty leaves had electron-dense stromata and swollen plastoglobuli. These results suggest that the epiphytic growth of the sooty mold may be attributed to the melanized layer and concentric bodies against a water-deficient environment on the leaf surface. Ultrastructural characteristics of the sooty leaves indicate typical features of dark-adapted and non-photosynthetic shade leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Agrios, G. N. (2005). Plant Pathology (5th ed.). Burlington: Elsevier Academic Press.

    Google Scholar 

  • Alexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). Introductory Mycology (4th ed.). New York: John Wiley & Sons.

    Google Scholar 

  • Bréhélin, C., Kessler, F., & Van Wijk, K. J. (2007). Plastoglobules: versatile lipoprotein particles in plastids. Trends in Plant Science, 12, 260–266.

    Article  PubMed  Google Scholar 

  • Brown, R. M., & Wilson, R. (1968). Electron microscopy of the lichen Physcia aipolia (Ehrh.) Nyl. Journal of Phycology, 4, 230–240.

    Article  PubMed  Google Scholar 

  • Chomnunti, P., Ko, T. W. K., Chukeatirote, E., Hyde, K. D., Cai, L., Jones, E. B. G., Kodsueb, R., Hassan, B. A., & Chen, H. (2012). Phylogeny of Chaetothyriaceae in northern Thailand including three new species. Mycologia, 104, 382–395.

    Article  PubMed  Google Scholar 

  • Chomnunti, P., Hongsanan, S., Aguirre-Hudson, B., Tian, Q., Peršoh, D., Dhami, M. K., Alias, A. S., Xu, J., Liu, X., Stadler, M., & Hyde, K. D. (2014). The sooty moulds. Fungal Diversity, 66, 1–36.

    Article  Google Scholar 

  • Crous, P. W., Schoch, C. L., Hyde, K. D., Wood, A. R., Gueidan, C., De Hong, G. S., & Groenewald, J. Z. (2009). Studies in Mycology, 64, 17–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan, Q., Jiang, W., Ding, M., Lin, Y., & Huang, D. (2014). Light affects the chloroplast ultrastructure and post-storage photosynthetic performance of watermelon (Citrullus lanatus) plug seedlings. PloS One, 9, e111165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Georgiev, G., Tsankov, G., Mirchev, P., & Petkov, P. (2008). Honeydew producers in oak forests of Strandzha Muntain, Bulgaria. Silva Balcanica, 9, 85–90.

    Google Scholar 

  • Hambleton, S., Tsuneda, A., & Currah, R. S. (2003). Comparative morphology and phylogenetic placement of two microsclerotial black fungi from Sphagnum. Mycologia, 95, 959–975.

    Article  CAS  PubMed  Google Scholar 

  • Havelka, J., & Starý, P. (2007). Myzocallis walshii (Hemiptera: Sternorrhyncha: Aphididae), an exotic invasive aphid on Quercus rubra, the American red oak; its bionomy in the Czech Republic. European Journal of Entomology, 104, 471–477.

    Article  Google Scholar 

  • Hodges, G. S., & Braman, S. K. (2004). Seasonal occurrence, phonological indicators and mortality factors affecting five scale insect species (Hemiptera: Diaspididae, Coccidae) in the urban landscape setting. Journal of Entomological Science, 39, 611–622.

    Google Scholar 

  • Kessler, K. J. Jr. (1992). How to recognize and control sooty molds HT-69. USDA For. Serv. Available from: www.treesearch.fs.fed.us/pubs/10925.

  • Kim, K. W. (2015). Three-dimensional surface reconstruction and in situ site-specific cutting of the teliospores of Puccinia miscanthi causing leaf rust of the biomass plant Miscanthus regia. Micron, 73, 15–20.

    Article  PubMed  Google Scholar 

  • Kim, K. W., Hyun, J. W., & Park, E. W. (2004). Cytology of cork layer formation of citrus and limited growth of Elsinoe fawcettii in scab lesions. European Journal of Plant Pathology, 110, 129–138.

    Article  Google Scholar 

  • Philipson, M. N. (1989). Ultrastructural features of a Stagonospora species (Ascomycotina) in senescent tissues of perennial ryegrass (Lolium perenne L.). New Phytologist, 113, 127–134.

    Article  Google Scholar 

  • Reynolds, D. R. (1999). Capnodium citri: The sooty mold fungi comprising the taxon concept. Mycopathologia, 148, 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Rikkinen, J., Dörfelt, H., Schmidt, A. R., & Wunderlich, J. (2003). Sooty moulds from European Tertiary amber, with notes on the systematic position of Rosaria (‘Cyanobacteria’). Mycological Research, 107, 251–256.

    Article  PubMed  Google Scholar 

  • Sanders, W. B., Moe, R. L., & Ascaso, C. (2004). The intertidal marine lichen formed by the pyrenomycete fungus Verrucaria tavaresiae (Ascomycotina) and the brown alga Petroderma maculiforme (Phaeophyceae): thallus organization and symbiont interaction. American Journal of Botany, 91, 511–522.

    Article  PubMed  Google Scholar 

  • Seo, Y., Park, J., Kim, Y. S., Park, Y., & Kim, Y. H. (2014). Screening and histopathological characterization of Korean carrot lines for resistance to the root-knot nematode Meloidogyne incognita. Plant Pathology Journal, 30, 75–81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao, R. X., Xin, L. F., Zheng, H. F., Li, L. L., Ran, W. L., Mao, J., & Yang, Q. H. (2016). Changes in chloroplast ultrastructure in leaves of drought-stressed maize inbred lines. Photosynthetica., 54, 74–80.

  • Sibbett, G. S., Davis, C. S., & Barnes, M. M. (1971). Walnut aphid and the sunburn problem. California Agriculture, 25, 12–14.

    Google Scholar 

  • Suzuki, T., Yamazaki, N., Sada, Y., Oguni, I., & Moriyasu, Y. (2003). Tissue distribution and intracellular localization of catechins in tea leaves. Bioscience, Biotechnology, and Biochemistry, 67, 2683–2686.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, R., Wise, R. R., Struck, K. R., & Sharkey, T. D. (2010). Moderate heat stress of Arabidopsis thaliana leaves causes chloroplast swelling and plastoglobule formation. Photosynthesis Research, 105, 123–134.

    Article  CAS  PubMed  Google Scholar 

  • Zobel, A., & Nighswander, J. E. (1991). Accumulation of phenolic compounds in the necrotic areas of Austrian and red pine needles after spraying with sulphuric acid: a possible bioindicator of air pollution. New Phytologist, 117, 565–574.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Woo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.W. Ultrastructure of the epiphytic sooty mold Capnodium and surface-colonized walnut leaves. Eur J Plant Pathol 146, 95–103 (2016). https://doi.org/10.1007/s10658-016-0895-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0895-9

Keywords

Navigation