Skip to main content
Log in

Apple scab control and activation of plant defence responses using potassium phosphite and chitosan

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

In this study, the effects of two elicitors (potassium phosphite and chitosan) on apple scab (Venturia inaequalis) and their ability to modulate plant defences were assessed. Potassium phosphite and chitosan were sprayed on apple seedlings 7 days before fungus inoculation, and disease intensity was evaluated 14 days after inoculation. Samples of leaves treated with phosphite or chitosan that proved to be susceptible and moderately susceptible to disease were then collected for analysis of their metabolic profile by attenuated total reflectance–Fourier transform infrared spectroscopy. The activity of the plant defence enzymes and the phenolic compound content were also determined by spectrophotometry and high performance liquid chromatography, respectively. The effect of product application on the germination of V. inaequalis was also evaluated. Moderately susceptible leaves presented higher peroxidase activity, regardless of the application of a product. Although it reduced spore germination by 45 %, chitosan did not affect the intensity of the disease. On the other hand, potassium phosphite (2 μL mL−1) reduced significantly the severity of scab by up to 62 % and it promoted the accumulation of salicylic acid, protocatechuic acid, and epicatechin in susceptible leaves, especially after the challenge with V. inaequalis. The salt did not exhibit antimicrobial activity. The resistance induced by potassium phosphite could thus play a significant role in scab control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amiri, A., & Bompeix, G. (2011). Control of Penicillium expansum with potassium phosphite and heat treatment. Crop Protection, 30(2), 222–227. doi:10.1016/j.cropro.2010.10.010.

    Article  CAS  Google Scholar 

  • Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Zou, X., Liu, Q., Wang, F., Feng, W., & Wan, N. (2014). Combination effect of chitosan and methyl jasmonate on controlling Alternaria alternata and enhancing activity of cherry tomato fruit defense mechanisms. Crop Protection, 56, 31–36. doi:10.1016/j.cropro.2013.10.007.

    Article  CAS  Google Scholar 

  • Copikova, J., Barros, A., Smidova, I., Cerna, M., Teixeira, D., Delgadillo, I., et al. (2006). Influence of hydration of food additive polysaccharides on FT-IR spectra distinction. Carbohydrate Polymers, 63(3), 355–359. doi:10.1016/j.carbpol.2005.08.049.

    Article  CAS  Google Scholar 

  • Daniel, R., & Guest, D. (2005). Defence responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiological and Molecular Plant Pathology, 67(3–5), 194–201. doi:10.1016/j.pmpp.2006.01.003.

    Article  CAS  Google Scholar 

  • Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21(6), 703–714. doi:10.1016/j.fm.2004.02.008.

    Article  CAS  Google Scholar 

  • Durner, J., Shah, J., & Klessig, D. F. (1997). Salicylic acid and disease resistance in plants. Trends in Plant Science, 2(7), 266–274. doi:10.1016/S1360-1385(97)86349-2.

    Article  Google Scholar 

  • Durrant, W. E., & Dong, X. (2004). Systemic acquired resistance. Annual Review of Phytopathology, 42, 185–209. doi:10.1146/annurev.phyto.42.040803.140421.

    Article  CAS  PubMed  Google Scholar 

  • El Ghaouth, A., Arul, J., Grenier, J., & Asselin, A. (1992). Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology, 82(4), 398–402.

    Article  Google Scholar 

  • El Ghaouth, A., Arul, J., Grenier, J., Benhamou, N., Asselin, A., & Bélanger, R. (1994). Effect of chitosan on cucumber plants: suppression of Pythium aphanidermatum and induction of defenses reactions. Phytopathology, 84, 313–320.

    Article  Google Scholar 

  • Faoro, F., Maffia, D., Cantu, D., & Iriti, M. (2008). Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. BioControl, 53, 387–401.

    Article  CAS  Google Scholar 

  • Felipini, R. B., & Di Piero, R. M. (2009). Reducação da severidade da podridão-amarga de maçã em pós-colheita pela imersão de frutos em quitosana. Pesquisa Agropecuária Brasileira, 44(12), 1591–1597.

    Article  Google Scholar 

  • Förster, H., Adaskaveg, J. E., Kim, D. H., & Stanghellini, M. E. (1998). Effect of phosphite on tomato and pepper plants and on susceptibility of pepper to phytophthora root and crown rot in hydroponic culture. Plant Disease, 82(10), 1165–1170. doi:10.1094/PDIS.1998.82.10.1165.

    Article  Google Scholar 

  • Gaspar, T. H., Penel, C. L., Thorpe, T., & Greppin, H. (1982). Peroxidases: a survey of their biochemical and physiological roles in higher plants. Liege: Bot. Inst. Liege University.

    Google Scholar 

  • Hammerschmidt, R., Nucles, E. M., & Kuc, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to. Colletotrichum lagenarium. Physiological Plant Pathology, 20(1), 73–82.

    Article  CAS  Google Scholar 

  • Holb, I. J. (2006). Effect of six sanitation treatments on leaf litter density, ascospore production of Venturia inaequalis and scab incidence in integrated and organic apple orchards. European Journal of Plant Pathology, 115(3), 293–3007.

    Article  Google Scholar 

  • Holb, I. J. (2009). Fungal disease management in environmentally friendly apple production. In E. Lichtfouse (Ed.), Climate Change, Intercropping, Pest Control and Beneficial Microorganisms: Sustainable Agriculture Reviews 2 (pp. 219–293). Dordrecht: Springer Science + Business Media B.V.

    Chapter  Google Scholar 

  • Jackson, T. J., Burgess, T., Colquhoun, I., & Hardy, G. E. S. J. (2000). Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathology, 49(1), 147–154. doi:10.1046/j.1365-3059.2000.00422.x.

  • Kauss, H., & Jeblick, W. (1995). Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiology, 108(3), 1171–1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, W., Prithiviraj, B., & Smith, D. L. (2003). Chitosan and chitin oligomers increase phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities in soybean leaves. Journal of Plant Physiology, 160(8), 859–863. doi:10.1078/0176-1617-00905.

    Article  CAS  PubMed  Google Scholar 

  • Kuhnen, S., Ogliari, J. B., Dias, P. F., Boffo, E. F., Correia, I., Ferreira, A. G., et al. (2010). ATR-FTIR spectroscopy and chemometric analysis applied to discrimination of landrace maize flours produced in Southern Brazil. International Journal of Food Science & Technology, 45(8), 1673–1681. doi:10.1111/j.1365-2621.2010.02313.x.

    Article  CAS  Google Scholar 

  • Kunkel, B. N., & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5(4), 325–331. doi:10.1016/S1369-5266(02)00275-3.

    Article  CAS  PubMed  Google Scholar 

  • Lambert, J. B., Shurvell, H. F., Lightner, D. A., & Cooks, R. G. (2001). Organic structural spectroscopy. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Lever, M. (1972). A new reaction for colorimetric determination of carbohydrates. Analytical Biochemistry, 47(1), 273–279.

    Article  CAS  PubMed  Google Scholar 

  • Li, B., & Xu, X. (2002). Infection and development of apple scab (Venturia inaequalis) on old leaves. Journal of Phytopathology, 691, 687–691.

    Article  Google Scholar 

  • Lin, W., Hu, X., Zhang, W., John Rogers, W., & Cai, W. (2005). Hydrogen peroxide mediates defence responses induced by chitosans of different molecular weights in rice. Journal of Plant Physiology, 162(8), 937–944. doi:10.1016/j.jplph.2004.10.003.

    Article  CAS  PubMed  Google Scholar 

  • Link, K. P., & Walker, J. C. (1933). The isolation of catechol from pigmented onion scales and its significance in relation to disease resistance in onions. The Journal of Biological Chemistry, c(2), 379–383.

    Google Scholar 

  • Loake, G., & Grant, M. (2007). Salicylic acid in plant defence–the players and protagonists. Current Opinion in Plant Biology, 10(5), 466–472. doi:10.1016/j.pbi.2007.08.008.

    Article  CAS  PubMed  Google Scholar 

  • Ma, Z., & Michailides, T. J. (2005). Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Protection, 24(10), 853–863. doi:10.1016/j.cropro.2005.01.011.

    Article  CAS  Google Scholar 

  • MacHardy, W. E. (1996). Apple Scab: Biology, Epidemiology, and Management. St. Paul: APS PRESS.

    Google Scholar 

  • Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., & Andreu, A. B. (2012). Potassium phosphite primes defense responses in potato against Phytophthora infestans. Journal of Plant Physiology, 169(14), 1417–1424. doi:10.1016/j.jplph.2012.05.005.

    Article  CAS  PubMed  Google Scholar 

  • Matheron, M. E., & Porchas, M. (2000). Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Disease, 84(4), 454–458. doi:10.1094/PDIS.2000.84.4.454.

    Article  CAS  Google Scholar 

  • Moller, I. M. (2001). Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 561–591. doi:10.1146/annurev.arplant.52.1.561.

    Article  CAS  PubMed  Google Scholar 

  • Nicholson, R. L., & Hammerschmidt, R. (1992). Phenolic compounds and their role in disease resistance. Annual Review of Phytopathology, 30, 369–389.

    Article  CAS  Google Scholar 

  • Nicholson, R. L., & Wood, K. V. (2001). Phytoalexins and secondary products, where are they and how can we measure them? Physiological and Molecular Plant Pathology, 59(2), 63–69. doi:10.1006/pmpp.2001.0344.

    Article  CAS  Google Scholar 

  • Niere, J. O., Deangelis, G., & Grant, B. R. (1994). The effect of phosphonate on the acid-soluble phosphorus components in the genus. Phytophthora. Microbiology, 140(7), 1661–1670. doi:10.1099/13500872-140-7-1661.

    Article  CAS  Google Scholar 

  • Percival, G. C., Noviss, K., & Haynes, I. (2009). Field evaluation of systemic inducing resistance chemicals at different growth stages for the control of apple (Venturia inaequalis) and pear (Venturia pirina) scab. Crop Protection, 28(8), 629–633. doi:10.1016/j.cropro.2009.03.010.

    Article  CAS  Google Scholar 

  • Qiu, M., Wu, C., Ren, G., Liang, X., Wang, X., & Huang, J. (2014). Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus. Food Chemistry, 155, 105–111. doi:10.1016/j.foodchem.2014.01.026.

    Article  CAS  PubMed  Google Scholar 

  • Reuveni, M., Sheglov, D., & Cohen, Y. (2003). Control of moldy-core decay in apple fruits by ß-aminobutyric acids and potassium phosphites. Plant Disease, 87(8), 933–936.

    Article  CAS  Google Scholar 

  • Schmidt, É. C., Pereira, B., dos Santos, R. W., Gouveia, C., Costa, G. B., Faria, G. S. M., et al. (2012). Responses of the macroalgae Hypnea musciformis after in vitro exposure to UV-B. Aquatic Botany, 100, 8–17. doi:10.1016/j.aquabot.2012.03.004.

    Article  CAS  Google Scholar 

  • Schulz, H., & Baranska, M. (2007). Identification and quantification of valuable plant substances by IR and raman spectroscopy. Vibrational Spectroscopy, 43(1), 13–25. doi:10.1016/j.vibspec.2006.06.001.

    Article  CAS  Google Scholar 

  • Schwabe, W. F. S. (1979). Changes in the scab susceptibility of apple leaves as influenced by age. Phytophylactica, 11, 53–56.

    Google Scholar 

  • Schwinn, F., & Staub, T. (1995). Oomycetes fungicides. In H. Lyr (Ed.), Modern Selective Fungicides: Properties, Applications, Mechanisms of Action (pp. 323–346). New York: Gustav Fischer Verlag.

    Google Scholar 

  • Shirasu, K., Nakajima, H., Rajasekhar, V. K., Dixon, R. A., & Lamb, C. (1997). Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. The Plant Cell, 9(2), 261–270. doi:10.1105/tpc.9.2.261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siegrist, J., Jeblick, W., & Kauss, H. (1994). Defense responses in infected and elicited cucumber (Cucumis sativus L.) hypocotyl segments exhibiting acquired resistance. Plant Physiology, 105(4), 1365–1374.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, O. C., Santos, H. A. A., Dalla Pria, M., & May-De Mio, L. L. (2011). Potassium phosphite for control of downy mildew of soybean. Crop Protection, 30(6), 598–604. doi:10.1016/j.cropro.2011.02.015.

    Article  CAS  Google Scholar 

  • Slatnar, A., Mikulic Petkovsek, M., Halbwirth, H., Stampar, F., Stich, K., & Veberic, R. (2010). Enzyme activity of the phenylpropanoid pathway as a response to apple scab infection. Annals of Applied Biology, 156(3), 449–456. doi:10.1111/j.1744-7348.2010.00402.x.

    Article  CAS  Google Scholar 

  • van Soest, J., Tournois, H., de Wit, D., & Vliegenthart, J. F. G. (1995). Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance fourier-transform IR spectroscopy. Carbohydrate Research, 279, 201–214.

  • Sutton, D. K., MacHardy, W. E., & Lord, W. G. (2000). Effects of shredding or treating apple leaf litter with urea on ascospore dose of Venturia inaequalis and disease buildup. Plant Disease, 84, 1319–1326.

    Article  Google Scholar 

  • Townsend, G. R., & Heuberger, J. W. (1943). Methods for estimating losses caused by diseases in fungicide experiments. The Plant Disease Reporter, 27, 340–343.

    CAS  Google Scholar 

  • van Loon, L. (1997). Induced resistance in plants and the role of pathogenesis-related proteins. European Journal of Plant Pathology, 103, 753–765.

    Article  Google Scholar 

  • Vidhysekaran, P. (1988). Physiology of disease resistance in Plants. Florida: CRC Press.

    Google Scholar 

  • Yin, L., Zou, Y., Ke, X., Liang, D., Du, X., Zhao, Y., et al. (2013). Phenolic responses of resistant and susceptible Malus plants induced by Diplocarpon mali. Scientia Horticulturae, 164, 17–23. doi:10.1016/j.scienta.2013.08.037.

    Article  CAS  Google Scholar 

  • Yogev, E., Sadowsky, A., Solel, Z., Oren, Y., & Orbach, Y. (2006). The performance of potassium phosphite for controlling Alternaria brown spot of citrus fruit. Journal of Plant Diseases and Protection, 113(5), 207–213 CCC:000242222800003.

    Article  CAS  Google Scholar 

  • Zhang, H. E., Yue, W. Q., Wu, Y. Q., Yi, W., Han, Z. H., & Zhang, X. Z. (2012). Selection and evaluation of interspecific hybrids of pear highly resistant to Venturia nashicola. Journal of Phytopathology, 160, 346–352.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo B. Felipini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felipini, R.B., Boneti, J.I., Katsurayama, Y. et al. Apple scab control and activation of plant defence responses using potassium phosphite and chitosan. Eur J Plant Pathol 145, 929–939 (2016). https://doi.org/10.1007/s10658-016-0881-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-0881-2

Keywords

Navigation