Skip to main content
Log in

Towards identifying pathogenic determinants of the chickpea pathogen Ascochyta rabiei

  • Full Research Paper
  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Ascochyta blight is a serious disease of cool-season grain legumes (chickpea, faba bean, lentil and pea) caused by fungal species of the anamorphic genus Ascochyta and related genera. Despite extensive studies on the biology, ecology, epidemiology and management of the disease, little is known about the pathogenic determinants of these pathogens. This research aims at using Ascochyta rabiei as a model for the genus in investigating genetic factors of pathogenicity, with the ultimate goal of elucidating pathogenic mechanisms. Three advances were made: (1) insertional mutants with altered pathogenicity were identified through in vivo screening, and genomic regions adjacent to the insertion sites in selected mutants were determined; (2) a phage library of A. rabiei genomic DNA was constructed, and the library was estimated to provide complete coverage of the A. rabiei genome. This library was used successfully to recover clones with DNA adjacent to insertional mutation sites and to isolate specific genes; (3) DNA probes specific for an acyl-CoA ligase (cps1) and a polyketide synthase gene (pks1) were developed and library clones containing the corresponding genomic regions were identified from the phage library. These advances provide the foundation and necessary tools for experimentation of ectopic complementation assays and targeted mutagenesis to elucidate the genetic mechanisms of pathogenicity of A. rabiei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akamatsu, H., & Peever, T. L. (2005). Molecular karyotypes of the phytopathogenic fungus Ascochyta rabiei and related legume-infecting Ascochyta spp. XXIII Fungal Genetics Conference. Fungal Genetics Newsletter, 52(Supplement), 204.

    Google Scholar 

  • Alam, S. S., Bilton, J. N., Slawin, A. M. Z., Williams, D. J., Sheppard, R. N., & Strange, R. N. (1989). Chickpea blight – Production of the phytotoxins solanapyrone A and C by Ascochyta rabiei. Phytochemistry, 28, 2627–2630.

    Article  CAS  Google Scholar 

  • Bundock, P., & Hooykaas, P. J. J. (1996). Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae genome by illegitimate recombination. Proceedings of National Academy of Science USA, 93, 15272–15275.

    Google Scholar 

  • Chen, W., Coyne, C., Peever, T., & Muehbauer, F. J. (2004a). Characterization of chickpea differentials for Ascochyta blight and identification of resistance sources for Ascochyta rabiei. Plant Pathology, 53, 759–769.

    Article  Google Scholar 

  • Chen, W., McPhee, K. E., & Muehlbauer, F. J. (2005). Use of a min-dome bioassay and grafting to study resistance of chickpea to Ascochyta blight. Journal of Phytopathology, 153, 579–587.

    Article  Google Scholar 

  • Chen, W., Sharma, K. D., & Wheeler, M. H. (2004b). Demonstration of the 1,8-dihydroxynaphthalene melanin pathway in Ascochyta rabiei. Inoculum, 55, 11 (Abstract).

    Google Scholar 

  • Chen, Y. M., & Strange, R. N. (1991). Synthesis of the solanapyrone phytotoxin by Ascochyta rabiei in response to metal cations and development of a defined medium for toxin production. Plant Pathology, 40, 401–407.

    Article  CAS  Google Scholar 

  • Cho, S., Chen, W., & Muehlbauer, F. J. (2005). Constitutive expression of the flavanone 3-hydroxylase gene related to pathotype-specific ascochyta blight resistance in Cicer arietinum L. Physiological and Molecular Plant Pathology, 67, 100–107.

    Article  CAS  Google Scholar 

  • Coram, T. E., & Pang, E. C. K. (2006). Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei. Plant Biotechnology Journal, 4, 647–666.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, J., & Kimber, R. B. E. (2007). Integrated disease management of Ascochyta blight in pulse crops. European Journal of Plant Pathology, 117 (this special issue).

  • Gilbert, M. J., Soanes, D. M., & Talbot, N. J. (2004). Functional genomic analysis of the rice blast fungus Magnaporthe grisea. In D. K. Arora & G. G. Khachatourians (Eds.), Applied mycology and biotechnology: Fungal genomics (Vol. 4, pp. 331–352). Amsterdam, Netherlands: Elsevier Science.

  • Henson, J., Butler, M., & Day, A. (1999). The dark side of the mycelium: Melanins and phytopathogenic fungi. Annual Review of Phytopathology, 37, 447–471.

    Article  PubMed  CAS  Google Scholar 

  • Hohl, B., Weidemann, C., Hohl, U., & Barz, W. (1991). Isolation of solanapyrones A, B and C from culture filtrates and spore germination fluids of Ascochyta rabiei and aspects of phytotoxin action. Journal of Phytopathology, 132, 193–206.

    Google Scholar 

  • Kahmann, R., & Basse, C. (1999). REMI (Restriction enzyme mediated integration) and its impact on the isolation of pathogenicity genes in fungi attacking plants. European Journal of Plant Pathology, 105, 221–229.

    Article  CAS  Google Scholar 

  • Kaur, S. (1995). Phytotoxicity of solanapyrones produced by the fungus Ascochyta rabiei and their possible role in blight of chickpea (Cicer arietinum). Plant Science 109, 23–29.

    Article  CAS  Google Scholar 

  • Kawamura, C., Tsujimoto, T., & Tsuge, T. (1999). Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Molecular Plant-Microbe Interactions, 12, 59–63.

    Article  PubMed  CAS  Google Scholar 

  • Kohler, G., Linkert, C., & Barz, W. (1995). Infection studies of Cicer arietinum (L.) with GUS-(E. coli β-glucuronidase) transformed Ascochyta rabiei strains. Journal of Phytopathology, 143, 589–595.

    Google Scholar 

  • Lu, S., Kroken, S., Lee, B. N., Robbertse, B., Churchill, A., Yoder, O. C., & Turgeon, B. (2003). A novel class of gene controlling virulence in plant pathogenic ascomycete fungi. Proceedings of National Academy of Science USA, 100, 5980–5985.

    Google Scholar 

  • Michielse, C., Hooykaas, P., Cees, A., van den Hondel, J., & Ram, A. (2005). Agrobacterium mediated transformation as a tool for functional genomics in fungi. Current Genetics, 48, 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Morgensen, E., Challen, M., & Strange, R. N. (2006). Reduction in solanapyrone phytotoxin production by Ascochyta rabiei transformed with Agrobacterium tumefaciens. FEMS Microbiology Letters, 255, 255–261.

    Article  CAS  Google Scholar 

  • Oliver, R., & Osborun, A. (1995). Molecular dissection of fungal phyopathogenicity. Microbiology, 141, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Peever, T. L. (2007). The role of host specificity in the speciation of Ascochyta pathogens of cool season food legumes. European Journal of Plant Pathology, 117, (this special issue).

  • Peever, T. L., Barve, M. P., Stone, L. J., & Kaiser, W. J. (2007). Evolutionary relationships among Ascochyta species infecting wild and cultivated hosts in the legume tribes Cicereae and Vicereae. Mycologia, 99, (in press).

  • Schoch, C. L., Aist, J. R., Yoder, O. C., & Turgeon, B. G. (2003). A complete inventory of fungal kinesins in representative filamentous ascomycetes. Fungal Genetics and Biology, 39, 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, G., & Fuchs, U. (2004). The role of microtublues in cellular organization and endocytosis in the plant pathogen Ustilago maydis. Journal of Microscopy, 214, 114–123.

    Article  PubMed  CAS  Google Scholar 

  • Straube, A., Hause, G., Fink, G., & Steinberg, G. (2006). Conventional kinesin mediates microtubule-microtubule interactions in vivo. Molecular Biology of the Cell, 17, 907–916.

    Article  PubMed  CAS  Google Scholar 

  • Talbot, N. J. (Ed.) (2004). Plant-pathogen interactions. Oxford, UK: Blackwell Publishing.

  • Taylor, P., & Ford, R. (2007). Biology of Ascochyta blight of cool season food and feed legumes. European Journal of Plant Pathology, 117, (this special issue).

  • Tenhaken, R., & Barz, W. (1991). Characterization of pectic enzymes from the chickpea pathogen Ascochyta rabiei. Verlag der Zeitschrift fur Naturforschung, 46c, 51–57.

    Google Scholar 

  • Tenhaken, R., Arnemann, M., Kohler, G., & Barz, W. (1997). Characterization and cloning of cutinase from Ascochyta rabiei. Verlag der Zeitschrift fur Naturforschung, 52c, 197–208.

    Google Scholar 

  • Tivoli, B., & Banniza, S. (2007). Comparative epidemiology of ascochyta blight on grain legumes. European Journal of Plant Pathology, 117, (this special issue).

  • Trapero-Casas, A., & Kaiser, W. J. (1992). Development of Didymella rabiei, the telomorph of Ascochyta rabiei, on chickpea straw. Phytopathology, 82, 1261–1266.

    Google Scholar 

  • Walton, J. (1994). Deconstructing the plant cell wall. Plant Physiology, 104, 1113–1118.

    PubMed  CAS  Google Scholar 

  • White, D., & Chen, W. (2006). Genetic transformation of Ascochyta rabiei using Agrobacterium-mediated transformation. Current Genetics, 49, 272–280.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, A., Lu, P., Dahl-Roshak, A. M., Paress, P. S., Kennedy, S., Tkacz, J. S., & An, Z. (2003). Efficient disruption of a polyketide synthase gene (pks1) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Molecular Genetics and Genomics, 268, 645–655.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, D., Chen, W. Towards identifying pathogenic determinants of the chickpea pathogen Ascochyta rabiei . Eur J Plant Pathol 119, 3–12 (2007). https://doi.org/10.1007/s10658-007-9122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-007-9122-z

Keywords

Navigation