Skip to main content
Log in

Direct numerical simulations of boundary condition effects on the propagation of density current in wall-bounded and open channels

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The propagation of density current under different boundary conditions is investigated using high resolution direct numerical simulations (DNS). A revised Kleiser and Schumann influence-matrix method is used to treat the general Robin type velocity boundary conditions and the related “tau” error corrections in the numerical simulations. Comparison of the simulation results reveals that the boundary conditions change the turbulent flow field and therefore the propagation of the front. This paper mainly focuses on the effects of boundary conditions and initial depth of the dense fluid. The differences in energy dissipation and overall front development in wall-bounded and open channels are examined. Through DNS simulations, it is evident that with the decrease of initial release depth ratio (\(D/H\)), the effect of the top boundary becomes less important. In wall-bounded channels, there are three distinctive layers in the vertical distribution of energy dissipation corresponding to the contributions from bottom wall, interface, and top wall, respectively. In open channels, there are only two layers with the top one missing due to the shear free nature of the boundary. It is found that the energy dissipation distribution in the bottom layer is similar for cases with the same \(D/H\) ratio regardless the top boundary condition. The simulation results also reveal that for low Reynolds number cases, the energy change due to concentration diffusion cannot be neglected in the energy budget. To reflect the real dynamics of density current, the dimensionless Froude number and Reynolds number should be defined using the release depth \(D\) as the length scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Acton JM, Huppert HE, Worster MG (2001) Two-dimensional viscous gravity currents flowing over a deep porous medium. J Fluid Mech 440:359–380

    Article  Google Scholar 

  2. Allen J (1985) Principles of physical sedimentology. George Allen and Unwin Ltd., London

    Book  Google Scholar 

  3. Benjamin TB (1968) Gravity currents and related phenomena. J Fluid Mech 31(02):209. doi:10.1017/S0022112068000133

    Article  Google Scholar 

  4. Bonometti T, Balachandar S (2010) Slumping of non-Boussinesq density currents of various initial fractional depths: a comparison between direct numerical simulations and a recent shallow-water model. Comput Fluids 39(4):729–734. doi:10.1016/j.compfluid.2009.11.008. http://linkinghub.elsevier.com/retrieve/pii/S0045793009001819

  5. Bonometti T, Balachandar S, Magnaudet J (2008) Wall effects in non-Boussinesq density currents. J Fluid Mech 616:445–475. doi:10.1017/S002211200800414X

    Article  Google Scholar 

  6. Britter RE, Simpson JE (1978) Experiments on the dynamics of a gravity current head. J Fluid Mech 88(02):223–240

    Article  Google Scholar 

  7. Britter RE, Simpson JE (1981) A note on the structure of the head of an intrusive gravity current. J Fluid Mech 112:459–466

    Article  Google Scholar 

  8. Cantero MI, Balachandar S, García MH, Ferry JP (2006) Direct numerical simulations of planar and cylindrical density currents. J Appl Mech 73(6):923

    Article  Google Scholar 

  9. Cantero MI, Lee JR, Balachandar S, García MH (2007) On the front velocity of gravity currents. J Fluid Mech 586:1–39. doi:10.1017/S0022112007005769

    Article  Google Scholar 

  10. Cantero MI, Balachandar S, Cantelli A, Pirmez C, Parker G (2009) Turbidity current with a roof: direct numerical simulation of self-stratified turbulent channel flow driven by suspended sediment. J Geophy Res 114:C03,008. doi:10.1029/2008JC004978, http://www.agu.org/pubs/crossref/2009/2008JC004978.shtml

  11. Canuto C, Hussaini M, Quarteroni A, Zhang T (1987) Spectral methods in fluid dynamics. Springer, New York

    Google Scholar 

  12. Cheong HB, Kuenen JJP, Linden PF (2006) The front speed of intrusive gravity currents. J Fluid Mech 552:1–11. doi:10.1017/S002211200500772X

    Article  Google Scholar 

  13. Dallimore C, Imberger J, Ishikawa T (2001) Entrainment and turbulence in saline underflow in Lake Ogawara. J Hydraul Eng 127(11):937–948

    Article  Google Scholar 

  14. Ermanyuk EV, Gavrilov NV (2007) A note on the propagation speed of a weakly dissipative gravity current. J Fluid Mech 574:393–403

    Article  Google Scholar 

  15. Fernandez R, Imberger J (2006) Bed roughness induced entrainment in a high Richardson number underflow. J Hydraul Res 44(6):725–738

    Article  Google Scholar 

  16. García M, Parker G (1989) Experiments on hydraulic jumps in turbidity currents near a canyon-fan transition. Science 245(4916):393–396

    Article  Google Scholar 

  17. Härtel C, Kleiser L, Michaud M, Stein CF (1997) A direct numerical simulation approach to the study of intrusion fronts. J Eng Math 32:103–120

    Article  Google Scholar 

  18. Härtel C, Meiburg E, Necker F (2000) Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries. J Fluid Mech 418:189–212

    Article  Google Scholar 

  19. Hebbert B, Imberger J, Loh I, Patterson J (1979) Collie river underflow into the Wellington reservoir. J Hydraul Div ASCE 105(5):533–545

    Google Scholar 

  20. Jackson PR, García CM, Oberg KA, Johnson KK, García MH (2008) Density currents in the Chicago River: characterization, effects on water quality, and potential sources. Sci Total Environ 401(1–3):130–143. doi:10.1016/j.scitotenv.2008.04.011

    Article  Google Scholar 

  21. Jiang Y, Liu X (2012) Numerical and experimental investigation of density current over bedforms and rough bottom. The third international symposium on shallow flows, Iowa City, Iowa, USA

  22. Kleiser L, Schumann U (1980) Treatment of incompressibility and boundary conditions in 3-D numerical spectral simulations of plane channel flows. In: Proceeding of the 3rd GAMM conference on numerical methods in fluid mechanics, pp. 165–173

  23. La Rocca M, Adduce C, Sciortino G, Pinzon AB (2008) Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom. Phys Fluids 20(106):603. doi:10.1063/1.3002381

    Google Scholar 

  24. Lauber G, Hager WH (1998) Experiments to dambreak wave: horizontal channel. J Hydraul Res 36(3):291–307. doi:10.1080/00221689809498620

    Article  Google Scholar 

  25. Liu X (2011) Extension of Kleiser and Schumanns influence-matrix method for generalized velocity boundary conditions. J Comput Phy 230(22):7911–7916. doi:10.1016/j.jcp.2011.07.016

    Article  Google Scholar 

  26. Liu X, Sinha S, Motta D, García MH (2009) Upstream intrusion effect of CSO event in bubbly Creek, IL. In: World environmental and water resources congress, ASCE, American society of civil engineers, Kansas City, Missouri, USA. doi:10.1061/41036(342)362

  27. Lowe RJ, Linden PF, Rottman JW (2002) A laboratory study of the velocity structure in an intrusive gravity current. J Fluid Mech 456:33–48

    Article  Google Scholar 

  28. Marino BM, Thomas LP (2002) Spreading of a gravity current over a permeable surface. J Hydraul Eng 128(5):527–533. doi:10.1061/(ASCE)0733-9429 (2002) 128:5(527)

    Google Scholar 

  29. Marino BM, Thomas LP, Linden PF (2005) The front condition for gravity currents. J Fluid Mech 536: 49–78

    Google Scholar 

  30. Necker F, Härtel C, Kleiser L, Meiburg E (2002) High-resolution simulations of particle-driven gravity currents. Int J Multiph Flow 28(2):279–300. doi:10.1016/S0301-9322(01)00065-9

    Article  Google Scholar 

  31. Necker F, Härtel C, Kleiser L, Meiburg E (2005) Mixing and dissipation in particle-driven gravity currents. J Fluid Mech 545:339–372. doi:10.1017/S0022112005006932

    Article  Google Scholar 

  32. Ooi SK, Constantinescu G, Weber L (2007) A numerical study of intrusive compositional gravity currents. Phys Fluids 19(7):076602

    Article  Google Scholar 

  33. Ooi SK, Constantinescu G, Weber L (2009) Numerical simulations of lock-exchange compositional gravity current. J Fluid Mech 635:361–388. doi:10.1017/S0022112009007599

    Article  Google Scholar 

  34. Scotti A (2008) A numerical study of the frontal region of gravity currents propagating on a free-slip boundary. Theor Comput Fluid Dyn 22(5):383–402. doi:10.1007/s00162-008-0081-6

    Article  Google Scholar 

  35. Séon T, Znaien J, Salin D, Hulin JP, Hinch EJ, Perrin B (2007) Transient buoyancy-driven front dynamics in nearly horizontal tubes. Phys Fluids 19(12):123603. doi:10.1063/1.2813581

    Article  Google Scholar 

  36. Shin J, Dalziel S, Linden P (2004) Gravity currents produced by lock exchange. J Fluid Mech 521:1–34. doi:10.1017/S002211200400165X

    Article  Google Scholar 

  37. Simpson J (1997) Gravity currents, 2nd edn. Cambridge University Press, Cambridge

  38. Simpson JE (1982) Gravity currents in the laboratory, atmosphere, and ocean. Annu Rev Fluid Mech 14:213–234

    Article  Google Scholar 

  39. Sinha S, Liu X, García MH (2012) Three-dimensional hydrodynamic modeling of the Chicago River, Illinois. Environ Fluid Mech 12(5):471–494. doi:10.1007/s10652-012-9244-5

    Article  Google Scholar 

  40. Sutherland BR, Kyba PJ, Flynn MR (2004) Intrusive gravity currents in two-layer fluids. J Fluid Mech 514:327–353

    Article  Google Scholar 

  41. Thomas LP, Marino BM, Linden PF (2004) Lock-release inertial gravity currents over a thick porous layer. J Fluid Mech 503:299–319. doi:10.1017/S0022112004007918

    Article  Google Scholar 

  42. Ungarish M, Huppert H (2000) High-reynolds-number gravity currents over a porous boundary: shallow-water solutions and box-model approximations. J Fluid Mech 418:1–23

    Article  Google Scholar 

  43. Winters KB, Lombard P, Riley JJ, Dasaro E (1995) Available potential energy and mixing in density-stratified fluids. J Fluid Mech 289:115–128

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the startup fund to Xiaofeng Liu from the University of Texas at San Antonio, USA. This work was also partially supported by the National Center for Supercomputing Applications under project TG-CTS100063 and utilized the SGI Altix system Cobalt. We also acknowledge the support by the Center for Simulation, Visualization and Real Time Prediction funded by a NSF grant (HRD-0932339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Jiang, Y. Direct numerical simulations of boundary condition effects on the propagation of density current in wall-bounded and open channels. Environ Fluid Mech 14, 387–407 (2014). https://doi.org/10.1007/s10652-013-9283-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-013-9283-6

Keywords

Navigation