Skip to main content
Log in

Growth rate of Pseudokirchneriella subcapitata exposed to herbicides found in surface waters in the Alqueva reservoir (Portugal): a bottom-up approach using binary mixtures

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Previous work showed the existence of ecotoxicity of water samples from the Alqueva reservoir due to the presence of the herbicides atrazine, simazine, terbuthylazine and metolachlor. In the present study we examine the effects of these herbicides singly and as binary mixtures on the growth rate of the microalgae Pseudokirchneriella subcapitata. Usually, the toxicity of mixtures is evaluated in relation to the reference models CA (concentration addiction) and IA (independent action). In this study CA model was selected to evaluate the joint effects of s-triazine herbicides on the growth of algae due to their similar mode of action. Moreover, IA reference model was chosen to evaluate the joint toxicity of the chloroacetanilide metolachlor and the s-triazine herbicides due to their different mode of action. In this study dose ratio was the common deviation obtained on both reference models. In the binary mixtures between atrazine/simazine and atrazine/terbuthylazine the increase of the mixtures toxicity (synergism) was mainly due to atrazine. Also, in the binary mixture between atrazine and metolachlor, atrazine was responsible for the increase (synergism) of the mixture toxicity. In the cases of the binary mixtures between simazine/metolachlor and terbuthylazine/metolachlor, the increase of the mixtures toxicity (synergism) was detected when metolachlor was the herbicide dominant, and antagonism was detected when simazine and terbuthylazine were dominant in both mixtures. This study represents an important step to understand the interactions among herbicides detected previously in the waters of the Alqueva reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altenburger R, Helge W, Grote M (2004) What contributes to the combined effect of a complex mixture? Environ Sci Technol 38:6353–6362

    Article  CAS  Google Scholar 

  • Backhaus T, Arrhenius Å, Blanck H (2004) Toxicity of a mixture of dissimilarly acting substances to natural algal communities:  predictive power and limitations of independent action and concentration addition. Environ Sci Technol 38(23):6363–6370. doi:10.1021/es0497678

    Article  CAS  Google Scholar 

  • Barata C, Damasio J, López MA, Kuster M, Alda MLd, Barceló D, Riva MC, Raldúa D (2007) Combined use of biomarkers and in situ bioassays in Daphnia magna to monitor environmental hazards of pesticides in the field. Environ Toxicol Chem 26(2):370–379

    Article  CAS  Google Scholar 

  • Bliss CI (1939) The toxicity of poisons applied jointly. Ann Appl Biol 26(3):585–615

    Article  CAS  Google Scholar 

  • Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377(3):397–407. doi:10.1007/s00216-003-2139-z

    Article  CAS  Google Scholar 

  • Cedergreen N, Kudsk P, Mathiassen SK, Rensen H, Streibig JC (2007a) Reproducibility of binary-mixture toxicity studies. Environ Toxicol Chem 26(1):149–156

    Article  CAS  Google Scholar 

  • Cedergreen N, Kudsk P, Mathiassen SK, Streibig JC (2007b) Combination effects of herbicides on plants and algae: do species and test systems matter? Pest Manag Sci 63(3):282–295

    Article  CAS  Google Scholar 

  • Couderchet M, Schmalfβ J, Böger P (1998) A specific and sensitive assay to quantify the herbicidal activity of chloroacetamides. Pestic Sci 52:381–387

    Article  CAS  Google Scholar 

  • Damásio J, Tauler R, Teixidó E, Rieradevall M, Prat N, Riva MC, Soares AMVM, Barata C (2008) Combined use of Daphnia magna in situ bioassays, biomarkers and biological indices to diagnose and identify environmental pressures on invertebrate communities in two Mediterranean urbanized and industrialized rivers (NE Spain). Aqua Toxicol 87(4):310–320

    Article  Google Scholar 

  • Fairchild JF, Ruessler DS, Haverland PS, Carlson AR (1997) Comparative sensitivity of Selenastrum capricornutum and lemna minor to sixteen herbicides. Arch Environ Contam Toxicol 32(4):353–357

    Article  CAS  Google Scholar 

  • Fairchild JF, Ruessler DS, Carlson AR (1998) Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor. Environ Toxicol Chem 17(9):1830–1834

    Article  CAS  Google Scholar 

  • Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2001) Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aqua Toxicol 56(1):13–32

    Article  CAS  Google Scholar 

  • Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH (2003) Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aqua Toxicol 63(1):43–63

    Article  CAS  Google Scholar 

  • González-Barreiro O, Rioboo C, Herrero C, Cid A (2006) Removal of triazine herbicides from freshwater systems using photosynthetic microorganisms. Environ Pollut 144(1):266–271

    Article  Google Scholar 

  • Groten JP (2000) Mixtures and interactions. Food Chem Toxicol 38(Suppl 1):S65–S71

    CAS  Google Scholar 

  • Jonker MJ, Piskiewicz AM, Ivorra i C, ria N, Kammenga JE (2004) Toxicity of binary mixture of cadmium-copper and carbendazim-copper to the nematode caenorhabditis elegans. Environ Toxicol Chem 23(6):1529–1537

    Article  CAS  Google Scholar 

  • Jonker MJ, Svendsen C, Bedaux JJM, Bongers M, Kammenga JE (2005) Significance testing of synergistic/antagonistic, dose level-dependent, or dose ratio-dependent effects in mixture dose–response analysis. Environ Toxicol Chem 24(10):2701–2713

    Article  CAS  Google Scholar 

  • Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH (2003a) Predictability of combined effects of eight chloroacetanilide herbicides on algal reproduction. Pest Manag Sci 59:1101–1110

    Article  CAS  Google Scholar 

  • Junghans M, Backhaus T, Faust M, Scholze M, Grimme LH (2003b) Toxicity of sulfonylurea herbicides to the green alga Scenedesmus vacuolatus: predictability of combination effects. Bull Environ Contam Toxicol 71(3):0585–0593

    Article  CAS  Google Scholar 

  • Klaus GT, Joachim FK, Roland A, Michael H, Markus L, Klaus HM, Heinz JW, Achim T (1991) The herbicide binding niche of photosystem II-a model. Pest Sci 31(1):65–72

    Article  Google Scholar 

  • Loewe S, Muischnek H (1926) Über Kombinationswirkungen. Naunyn-Schmiedeberg’s Archives of Pharmacology 114(5):313–326

    Article  CAS  Google Scholar 

  • Loureiro S, Svendsen C, Ferreira ALG, Pinheiro C, Ribeiro F, Soares AMVM (2010) Toxicity of three binary mixtures to Daphnia magna: comparing chemical modes of action and deviations from conceptual models. Environ Toxicol Chem 29(8):1716–1726

    Article  CAS  Google Scholar 

  • OECD (2006) OECD guidelines for the testing of chemicals. Guideline 201: freshwater alga and cyanobacteria, growth inhibition test, adopted March 2006

  • Okamura H, Aoyama I, Liu D, Maguire RJ, Pacepavicius GJ, Lau YL (2000) Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Res 34(14):3523–3530

    Article  CAS  Google Scholar 

  • Pérez J, Loureiro S, Menezes S, Palma P, Fernandes R, Barbosa I, Soares A (2010) Assessment of water quality in the alqueva reservoir (Portugal) using bioassays. Environ Sci Pollut Res 17(3):688–702

    Article  Google Scholar 

  • Stein JR (1973) Handbook of phycological methods, culture methods, and growth measurements. Cambridge Univ Press, London

    Google Scholar 

  • Syberg K, Jensen TS, Cedergreen N, Rank J (2009) On the use of mixture toxicity assessment in reach and the water framework directive: a review. Hum Ecol Risk Assess Int J 15(6):1257–1272

    Article  CAS  Google Scholar 

  • Systat (2006) Systat Software, Incorporation. SigmaPlot for Windows version 10.0

  • Verro R, Finizio A, Otto S, Vighi M (2008a) Predicting pesticide environmental risk in intensive agricultural areas. I: screening level risk assessment of individual chemicals in surface Waters. Environ Sci Technol 43(2):522–529. doi:10.1021/es801855f

    Article  Google Scholar 

  • Verro R, Finizio A, Otto S, Vighi M (2008b) Predicting pesticide environmental risk in intensive agricultural areas. II: screening level risk assessment of complex mixtures in surface waters. Environ Sci Technol 43(2):530–537. doi:10.1021/es801858h

    Article  Google Scholar 

  • Walter H, Consolaro F, Gramatica P, Scholze M, Altenburger R (2002) Mixture toxicity of priority pollutants at no observed effect concentrations (NOECs). Ecotoxicology 11(5):299–310

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a PhD Grant (SFRH/BD/62818/2009) attributed to Joanne Rodríguez Pérez by the Portuguese Science and Technology Foundation (FCT) and by the project FUTRICA—FUTRICA—Chemical Flow in an Aquatic TRophic Chain (PTDC/AAC-AMB/104666/2008) funded by FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Pérez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, J., Domingues, I., Soares, A.M.V.M. et al. Growth rate of Pseudokirchneriella subcapitata exposed to herbicides found in surface waters in the Alqueva reservoir (Portugal): a bottom-up approach using binary mixtures. Ecotoxicology 20, 1167–1175 (2011). https://doi.org/10.1007/s10646-011-0661-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-011-0661-x

Keywords

Navigation