Skip to main content

Advertisement

Log in

GLP-2 Acutely Prevents Endotoxin-Related Increased Intestinal Paracellular Permeability in Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Circulating endotoxin (lipopolysaccharide, LPS) increases the gut paracellular permeability. We hypothesized that glucagon-like peptide-2 (GLP-2) acutely reduces LPS-related increased intestinal paracellular permeability by a mechanism unrelated to its intestinotrophic effect.

Methods

We assessed small intestinal paracellular permeability in vivo by measuring the appearance of intraduodenally perfused FITC-dextran 4000 (FD4) into the portal vein (PV) in rats 1–24 h after LPS treatment (5 mg/kg, ip). We also examined the effect of a stable GLP-2 analog teduglutide (TDG) on FD4 permeability.

Results

FD4 movement into the PV was increased 6 h, but not 1 or 3 h after LPS treatment, with increased PV GLP-2 levels and increased mRNA expressions of proinflammatory cytokines and proglucagon in the ileal mucosa. Co-treatment with a GLP-2 receptor antagonist enhanced PV FD4 concentrations. PV FD4 concentrations 24 h after LPS were higher than FD4 concentrations 6 h after LPS, reduced by exogenous GLP-2 treatment given 6 or 12 h after LPS treatment. FD4 uptake measured 6 h after LPS was reduced by TDG 3 or 6 h after LPS treatment. TDG-associated reduced FD4 uptake was reversed by the VPAC1 antagonist PG97-269 or L-NAME, not by EGF or IGF1 receptor inhibitors.

Conclusions

Systemic LPS releases endogenous GLP-2, reducing LPS-related increased permeability. The therapeutic window of exogenous GLP-2 administration is at minimum within 6–12 h after LPS treatment. Exogenous GLP-2 treatment is of value in the prevention of increased paracellular permeability associated with endotoxemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DPP4:

Dipeptidyl peptidase-4

GLP-2:

Glucagon-like peptide-2

GLP2R:

GLP-2 receptor

LPS:

Lipopolysaccharide

GPCR:

G protein-coupled receptor

PV:

Portal vein

IGF-1:

Insulin-like growth factor-1

EGF:

Epidermal growth factor

NO:

Nitric oxide

NOS:

NO synthase

VIP:

Vasoactive intestinal peptide

L-NAME:

Nω-nitro-l-arginine methyl ester

PACAP:

Pituitary adenylate cyclase-activating peptide

TDG:

Teduglutide

VPAC1:

VIP/PACAP receptor-1

References

  1. Ammori BJ, Leeder PC, King RF, et al. Early increase in intestinal permeability in patients with severe acute pancreatitis: correlation with endotoxemia, organ failure, and mortality. J Gastrointest Surg. 1999;3:252–262.

    CAS  PubMed  Google Scholar 

  2. Gäbele E, Dostert K, Hofmann C, et al. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J Hepatol. 2011;55:1391–1399.

    PubMed  Google Scholar 

  3. Sorkine P, Szold O, Halpern P, et al. Gut decontamination reduces bowel ischemia-induced lung injury in rats. Chest. 1997;112:491–495.

    CAS  PubMed  Google Scholar 

  4. Cohen J, Vincent JL, Adhikari NK, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015;15:581–614.

    PubMed  Google Scholar 

  5. Drucker DJ, Erlich P, Asa SL, Brubaker PL. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci U S A. 1996;93:7911–7916.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Cani PD, Possemiers S, Van de WT, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58:1091–1103.

    CAS  PubMed  Google Scholar 

  7. Rowland KJ, Trivedi S, Lee D, et al. Loss of glucagon-like peptide-2-induced proliferation following intestinal epithelial insulin-like growth factor-1-receptor deletion. Gastroenterology. 2011;141:2166–2175.

    CAS  PubMed  Google Scholar 

  8. Bahrami J, Yusta B, Drucker DJ. ErbB activity links the glucagon-like peptide-2 receptor to refeeding-induced adaptation in the murine small bowel. Gastroenterology. 2010;138:2447–2456.

    CAS  PubMed  Google Scholar 

  9. Orskov C, Hartmann B, Poulsen SS, Thulesen J, Hare KJ, Holst JJ. GLP-2 stimulates colonic growth via KGF, released by subepithelial myofibroblasts with GLP-2 receptors. Regul Pept. 2005;124:105–112.

    CAS  PubMed  Google Scholar 

  10. Kaunitz JD, Akiba Y. Control of intestinal epithelial proliferation and differentiation: the microbiome, enteroendocrine L cells, telocytes, enteric nerves, and GLP, too. Dig Dis Sci. 2019;64:2709–2716. https://doi.org/10.1007/s10620-019-05778-1.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guan X, Karpen HE, Stephens J, et al. GLP-2 receptor localizes to enteric neurons and endocrine cells expressing vasoactive peptides and mediates increased blood flow. Gastroenterology. 2006;130:150–164.

    CAS  PubMed  Google Scholar 

  12. Sugamoto S, Kawauch S, Furukawa O, Mimaki TH, Takeuchi K. Role of endogenous nitric oxide and prostaglandin in duodenal bicarbonate response induced by mucosal acidification in rats. Dig Dis Sci. 2001;46:1208–1216. https://doi.org/10.1023/A:1010603026913.

    Article  CAS  PubMed  Google Scholar 

  13. Eklund S, Jodal M, Lundgren O, Sjoqvist A. Effects of vasoactive intestinal polypeptide on blood flow, motility and fluid transport in the gastrointestinal tract of the cat. Acta Physiol Scand. 1979;105:461–468.

    CAS  PubMed  Google Scholar 

  14. Yao B, Hogan DL, Bukhave K, Koss MA, Isenberg JI. Bicarbonate transport by rabbit duodenum in vitro: effect of vasoactive intestinal peptide, prostaglandin E2, and cyclic adenosine monophosphate. Gastroenterology. 1993;104:732–740.

    CAS  PubMed  Google Scholar 

  15. Nylander O, Hällgren A, Holm L. Duodenal mucosal alkaline secretion, permeability, and blood flow. Am J Physiol. 1993;265:G1029–G1038.

    CAS  PubMed  Google Scholar 

  16. Neunlist M, Toumi F, Oreschkova T, et al. Human ENS regulates the intestinal epithelial barrier permeability and a tight junction-associated protein ZO-1 via VIPergic pathways. Am J Physiol Gastrointest Liver Physiol. 2003;285:G1028–G1036.

    CAS  PubMed  Google Scholar 

  17. Takeuchi K, Kagawa S, Mimaki H, Aoi M, Kawauchi S. COX and NOS isoforms involved in acid-induced duodenal bicarbonate secretion in rats. Dig Dis Sci. 2002;47:2116–2124. https://doi.org/10.1023/A:1019601702559.

    Article  CAS  PubMed  Google Scholar 

  18. Kahles F, Meyer C, Mollmann J, et al. GLP-1 secretion is increased by inflammatory stimuli in an IL-6-dependent manner, leading to hyperinsulinemia and blood glucose lowering. Diabetes. 2014;63:3221–3229.

    CAS  PubMed  Google Scholar 

  19. Nguyen AT, Mandard S, Dray C, et al. Lipopolysaccharides-mediated increase in glucose-stimulated insulin secretion: involvement of the GLP-1 pathway. Diabetes. 2014;63:471–482.

    CAS  PubMed  Google Scholar 

  20. Lebrun LJ, Lenaerts K, Kiers D, et al. Enteroendocrine L cells sense LPS after gut barrier injury to enhance GLP-1 secretion. Cell Rep. 2017;21:1160–1168.

    CAS  PubMed  Google Scholar 

  21. Wang JH, Inoue T, Higashiyama M, et al. Umami receptor activation increases duodenal bicarbonate secretion via glucagon-like peptide-2 release in rats. J Pharmacol Exp Ther. 2011;339:464–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Williams JM, Duckworth CA, Watson AJ, et al. A mouse model of pathological small intestinal epithelial cell apoptosis and shedding induced by systemic administration of lipopolysaccharide. Dis Model Mech. 2013;6:1388–1399.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yue C, Wang W, Tian WL, et al. Lipopolysaccharide-induced failure of the gut barrier is site-specific and inhibitable by growth hormone. Inflamm Res. 2013;62:407–415.

    CAS  PubMed  Google Scholar 

  24. Volynets V, Reichold A, Bardos G, Rings A, Bleich A, Bischoff SC. Assessment of the intestinal barrier with five different permeability tests in healthy C57BL/6J and BALB/cJ mice. Dig Dis Sci. 2016;61:737–746. https://doi.org/10.1007/s10620-015-3935-y.

    Article  CAS  PubMed  Google Scholar 

  25. Gourlet P, Vandermeers A, Vertongen P, et al. Development of high affinity selective VIP1 receptor agonists. Peptides. 1997;18:1539–1545.

    CAS  PubMed  Google Scholar 

  26. Mizumori M, Meyerowitz J, Takeuchi T, et al. Epithelial carbonic anhydrases facilitate PCO2 and pH regulation in rat duodenal mucosa. J Physiol. 2006;573:827–842.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Akiba Y, Inoue T, Kaji I, et al. Short-chain fatty acid sensing in rat duodenum. J Physiol. 2015;593:585–599.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Thulesen J, Knudsen LB, Hartmann B, et al. The truncated metabolite GLP-2 (3-33) interacts with the GLP-2 receptor as a partial agonist. Regul Pept. 2002;103:9–15.

    CAS  PubMed  Google Scholar 

  29. Drucker DJ, DeForest L, Brubaker PL. Intestinal response to growth factors administered alone or in combination with human [Gly2]glucagon-like peptide 2. Am J Physiol. 1997;273:G1252–G1262.

    CAS  PubMed  Google Scholar 

  30. García-Echeverría C, Pearson MA, Marti A, et al. In vivo antitumor activity of NVP-AEW541-A novel, potent, and selective inhibitor of the IGF-IR kinase. Cancer Cell. 2004;5:231–239.

    PubMed  Google Scholar 

  31. Bos M, Mendelsohn J, Kim YM, Albanell J, Fry DW, Baselga J. PD153035, a tyrosine kinase inhibitor, prevents epidermal growth factor receptor activation and inhibits growth of cancer cells in a receptor number-dependent manner. Clin Cancer Res. 1997;3:2099–2106.

    CAS  PubMed  Google Scholar 

  32. Unno N, Wang H, Menconi MJ, et al. Inhibition of inducible nitric oxide synthase ameliorates endotoxin-induced gut mucosal barrier dysfunction in rats. Gastroenterology. 1997;113:1246–1257.

    CAS  PubMed  Google Scholar 

  33. Han X, Fink MP, Yang R, Delude RL. Increased iNOS activity is essential for intestinal epithelial tight junction dysfunction in endotoxemic mice. Shock. 2004;21:261–270.

    CAS  PubMed  Google Scholar 

  34. Buchholz BM, Chanthaphavong RS, Bauer AJ. Nonhemopoietic cell TLR4 signaling is critical in causing early lipopolysaccharide-induced ileus. J Immunol. 2009;183:6744–6753.

    CAS  PubMed  Google Scholar 

  35. Amato A, Baldassano S, Serio R, Mule F. Glucagon-like peptide-2 relaxes mouse stomach through vasoactive intestinal peptide release. Am J Physiol Gastrointest Liver Physiol. 2009;296:G678–G684.

    CAS  PubMed  Google Scholar 

  36. Wøjdemann M, Wettergren A, Hartmann B, Holst JJ. Glucagon-like peptide-2 inhibits centrally induced antral motility in pigs. Scand J Gastroenterol. 1998;33:828–832.

    PubMed  Google Scholar 

  37. Nagell CF, Wettergren A, Pedersen JF, Mortensen D, Holst JJ. Glucagon-like peptide-2 inhibits antral emptying in man, but is not as potent as glucagon-like peptide-1. Scand J Gastroenterol. 2004;39:353–358.

    CAS  PubMed  Google Scholar 

  38. Berg JK, Kim EH, Li B, Joelsson B, Youssef NN. A randomized, double-blind, placebo-controlled, multiple-dose, parallel-group clinical trial to assess the effects of teduglutide on gastric emptying of liquids in healthy subjects. BMC Gastroenterol. 2014;14:25.

    PubMed  PubMed Central  Google Scholar 

  39. Riegler M, Sedivy R, Sogukoglu T, et al. Epidermal growth factor promotes rapid response to epithelial injury in rabbit duodenum in vitro. Gastroenterology. 1996;111:28–36.

    CAS  PubMed  Google Scholar 

  40. Van Landeghem L, Santoro MA, Mah AT, et al. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations. FASEB J. 2015;29:2828–2842.

    PubMed  PubMed Central  Google Scholar 

  41. Conlin VS, Wu X, Nguyen C, et al. Vasoactive intestinal peptide ameliorates intestinal barrier disruption associated with Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2009;297:G735–750.

    CAS  PubMed  Google Scholar 

  42. Clayburgh DR, Barrett TA, Tang Y, et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Invest. 2005;115:2702–2715.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Delgado M, Pozo D, Martinez C, et al. Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit endotoxin-induced TNF-alpha production by macrophages: in vitro and in vivo studies. J Immunol. 1999;162:2358–2367.

    CAS  PubMed  Google Scholar 

  44. Marier JF, Mouksassi MS, Gosselin NH, Beliveau M, Cyran J, Wallens J. Population pharmacokinetics of teduglutide following repeated subcutaneous administrations in healthy participants and in patients with short bowel syndrome and Crohn’s disease. J Clin Pharmacol. 2010;50:36–49.

    CAS  PubMed  Google Scholar 

  45. Hansen L, Hare KJ, Hartmann B, et al. Metabolism of glucagon-like peptide-2 in pigs: role of dipeptidyl peptidase IV. Regul Pept. 2007;138:126–132.

    CAS  PubMed  Google Scholar 

  46. Hollander D, Kaunitz JD. The “Leaky Gut”: tight junctions but loose associations? Dig Dis Sci. 2019. https://doi.org/10.1007/s10620-019-05777-2. (in press).

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by a Department of Veterans Affairs Merit Review Award (Grant No. 5I01BX001245-08), NIH R01 DK54221, and an investigator-initiated Grant from Shire Pharmaceuticals/Takeda Pharmaceuticals USA (Grant Nos. IIR-USA-001851, IIR-USA-000857).

Author information

Authors and Affiliations

Authors

Contributions

Y.A. and J.D.K. were responsible for the study concept and design and for drafting article. K.M., T.T., Y.A., H.S., and E.I. were responsible for collection, assembly, and analysis of data. I.K and A.K provided the essential chemicals for the experiments. Y.A. and J.D.K. were responsible for data interpretation.

Corresponding author

Correspondence to Jonathan D. Kaunitz.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Maruta and Takajo have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruta, K., Takajo, T., Akiba, Y. et al. GLP-2 Acutely Prevents Endotoxin-Related Increased Intestinal Paracellular Permeability in Rats. Dig Dis Sci 65, 2605–2618 (2020). https://doi.org/10.1007/s10620-020-06097-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06097-6

Keywords

Navigation