Skip to main content

Advertisement

Log in

Epigenetic Regulation of microRNAs in Gastric Cancer

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Gastric cancer is one of the most common cancers and accounts for a large proportion of cancer-related deaths in the world, while the pathogenesis of it is still not clear. Epigenetic changes have been found to participate in the development and progression of gastric cancer. Epigenetic changes involve methylation of cytosines in DNA, modifications of histone, chromatin remodeling, and alterations in the expression of microRNAs. MicroRNAs, a family of small non-coding RNAs, have been demonstrated to participate in many fundamental biological processes including the carcinogenesis of gastric cancer. Previous studies have shown that the downregulation of microRNAs are often caused by the methylation in the CpG islands of microRNA promoters. Here, we have summarized the functions and molecular mechanisms of gastric cancer related methylated microRNAs in gastric carcinogenesis. We further envisage the clinical application of microRNA methylation in the early diagnosis, treatment and prognosis assessment of gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bertuccio P, Chatenoud L, Levi F, et al. Recent patterns in gastric cancer: a global overview. Int J Cancer. 2009;125:666–673.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Waddington CH. Preliminary notes on the development of the wings in normal and mutant strains of drosophila. Proc Natl Acad Sci USA. 1939;25:299–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Holliday R. The inheritance of epigenetic defects. Science. 1987;238:163–170.

    Article  CAS  PubMed  Google Scholar 

  5. You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell. 2012;22:9–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Sawan C, Vaissière T, Murr R, Herceg Z. Epigenetic drivers and genetic passengers on the road to cancer. Mutat Res. 2008;642:1–13.

    Article  CAS  PubMed  Google Scholar 

  7. Kelly TK, De Carvalho DD, Jones PA. Epigenetic modifications as therapeutic targets. Nat Biotechnol. 2010;28:1069–1078.

    Article  CAS  PubMed  Google Scholar 

  8. Miremadi A, Oestergaard MZ, Pharoah PD, Caldas C. Cancer genetics of epigenetic genes. Hum Mol Genet. 2007;16:R28–R49.

    Article  CAS  PubMed  Google Scholar 

  9. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042–2054.

    Article  CAS  PubMed  Google Scholar 

  10. Weber M, Hellmann I, Stadler MB, et al. Distribution, silencing potential and evolutionary impact of promote r DNA methylation in the human genome. Nat Genet. 2007;39:457–466.

    Article  CAS  PubMed  Google Scholar 

  11. Yegin Z, Gunes S, Buyukalpelli R. Hypermethylation of TWIST1 and NID2 in tumor tissues and voided urine in urinary bladder cancer patients. DNA Cell Biol. 2013;32:386–392.

    Article  CAS  PubMed  Google Scholar 

  12. Takagi K, Fujiwara K, Takayama T, Mamiya T, Soma M, Nagase H. DNA hypermethylation of zygote arrest 1 (ZAR1) in hepatitis C virus positive related hepatocellular carcinoma. Springerplus. 2013;2:150.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Diede SJ. TERT hypermethylation: biomarker in paediatric brain tumours. Lancet Oncol. 2013;14:447–448.

    Article  PubMed  Google Scholar 

  14. Hur K, Cejas P, Feliu J, et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut. 2013 (Epub ahead of print). doi:10.1136/gutjnl-2012-304219.

  15. Shi J, Shi W, Ni L, et al. OCT4 is epigenetically regulated by DNA hypomethylation of promoter and exon in primary gliomas. Oncol Rep. 2013;30:201–206.

    PubMed  Google Scholar 

  16. Kim R, Kulkarni P, Hannenhalli S. Derepression of cancer/testis antigens in cancer is associated with distinct patterns of DNA hypomethylation. BMC Cancer. 2013;13:144.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004;14:1902–1910.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004;23:4051–4060.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Lee Y, Ahn C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003;425:415–419.

    Article  CAS  PubMed  Google Scholar 

  20. Landthaler M, Yalcin A, Tuschl T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr Biol. 2004;14:2162–2167.

    Article  CAS  PubMed  Google Scholar 

  21. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004;10:185–191.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature. 2000;404:293–296.

    Article  CAS  PubMed  Google Scholar 

  23. Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature. 2005;436:740–744.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Hutvanger G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science. 2002;297:2056–2060.

    Article  Google Scholar 

  25. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–233.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of mammalian microRNA targets. Cell. 2003;115:787–798.

    Article  CAS  PubMed  Google Scholar 

  27. Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet. 2005;37:495–500.

    Article  CAS  PubMed  Google Scholar 

  28. Betel D, Wilson M, Gabow A, Marks DS, Sander C. The microRNA.org resource: targets and expression. Nucleic Acids Res. 2008;36:D149–D153.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355.

    Article  CAS  PubMed  Google Scholar 

  31. Eskildsen TV, Jeppesen PL, Schneider M, et al. Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci. 2013;14:11190–11207.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Corral-Fernández NE, Salgado-Bustamante M, Martínez-Leija ME, et al. Dysregulated miR-155 expression in peripheral blood mononuclear cells from patients with type 2 diabetes. Exp Clin Endocrinol Diabetes. 2013;121:347–353.

    Article  PubMed  Google Scholar 

  33. Swaminathan S, Murray DD, Kelleher AD. The role of microRNAs in HIV-1 pathogenesis and therapy. AIDS. 2012;26:1325–1334.

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Li M, Zhang R, Wang Y, et al. Effect of miR-335 upregulation on the apoptosis and invasion of lung cancer cell A549 and H1299. Tumour Biol. 2013;34:3101–3109.

    Google Scholar 

  35. He H, Di Y, Liang M, et al. The microRNA-218 and ROBO-1 signaling axis correlates with the lymphatic metastasis of pancreatic cancer. Oncol Rep. 2013;30:651–658.

    CAS  PubMed  Google Scholar 

  36. Xu YY, Wu HJ, Ma HD, Xu LP, Huo Y, Yin LR. MicroRNA-503 suppresses proliferation and cell cycle progression of endometrioid endometrial cancer via negatively regulating cyclin D1. FEBS J. 2013;280:3768–3779.

    Google Scholar 

  37. Bae HJ, Noh JH, Kim JK, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting oncogenic SIRT1 in hepatocellular carcinoma. Oncogene. 2013 (Epub ahead of print). doi:10.1038/onc.2013.216.

  38. Zhao S, Yao DS, Chen JY, Ding N. Aberrant expression of miR-20a and miR-203 in cervical cancer. Asian Pac J Cancer Prev. 2013;14:2289–2293.

    Article  PubMed  Google Scholar 

  39. Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006;9:435–443.

    Article  CAS  PubMed  Google Scholar 

  40. Kunej T, Godnic I, Ferdin J, Horvat S, Dovc P, Calin GA. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res. 2011;717:77–84.

    Article  CAS  PubMed  Google Scholar 

  41. Ando T, Yoshida T, Enomoto S, et al. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer. 2009;124:2367–2374.

    Article  CAS  PubMed  Google Scholar 

  42. Saito Y, Suzuki H, Tsugawa H, et al. Chromatin remodeling at Alu repeats by epigenetic treatment activates silenced microRNA-512-5p with downregulation of Mcl-1 in human gastric cancer cells. Oncogene. 2009;28:2738–2744.

    Article  CAS  PubMed  Google Scholar 

  43. Shen R, Pan S, Qi S, Lin X, Cheng S. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 in gastric cancer. Biochem Biophys Res Commun. 2010;394:1047–1052.

    Article  CAS  PubMed  Google Scholar 

  44. Kang M, Li Y, Liu W, et al. miR-129-2 suppresses proliferation and migration of esophageal carcinoma cells through downregulation of SOX4 expression. Int J Mol Med. 2013;32:51–58.

    CAS  PubMed  Google Scholar 

  45. Yeh YM, Chuang CM, Chao KC, Wang LH. MicroRNA-138 suppresses ovarian cancer cell invasion and metastasis by targeting SOX4 and HIF-1α. Int J Cancer. 2013;133:867–878.

    Article  CAS  PubMed  Google Scholar 

  46. Castillo SD, Matheu A, Mariani N, et al. Novel transcriptional targets of the SRY-HMG box transcription factor SOX4 link its expression to the development of small cell lung cancer. Cancer Res. 2012;72:176–186.

    Article  CAS  PubMed  Google Scholar 

  47. Huang YW, Liu JC, Deatherage DE, et al. Epigenetic repression of microRNA-129-2 leads to overexpression of SOX4 oncogene in endometrial cancer. Cancer Res. 2009;69:9038–9046.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Aaboe M, Birkenkamp-Demtroder K, Wiuf C, et al. SOX4 expression in bladder carcinoma: clinical aspects and in vitro functional characterization. Cancer Res. 2006;66:3434–3442.

    Article  CAS  PubMed  Google Scholar 

  49. Bentwich I, Avniel A, Karov Y, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet. 2005;37:766–770.

    Article  CAS  PubMed  Google Scholar 

  50. Zhang R, Wang YQ, Su B. Molecular evolution of a primate-specific microRNA family. Mol Biol Evol. 2008;25:1493–1502.

    Article  CAS  PubMed  Google Scholar 

  51. Berezikov E, Thuemmler F, van Laake LW, et al. Diversity of microRNAs in human and chimpanzee brain. Nat Genet. 2006;38:1375–1377.

    Article  CAS  PubMed  Google Scholar 

  52. Tsai KW, Kao HW, Chen HC, Chen SJ, Lin WC. Epigenetic control of the expression of a primate-specific microRNA cluster in human cancer cells. Epigenetics. 2009;4:587–592.

    Article  CAS  PubMed  Google Scholar 

  53. Hashimoto Y, Akiyama Y, Otsubo T, Shimada S, Yuasa Y. Involvement of epigenetically silenced microRNA-181c in gastric carcinogenesis. Carcinogenesis. 2010;31:777–784.

    Article  CAS  PubMed  Google Scholar 

  54. Tsukamoto Y, Nakada C, Noguchi T, et al. MicroRNA-375 is downregulated in gastric carcinomas and regulates cell survival by targeting PDK1 and 14-3-3ζ. Cancer Res. 2010;70:2339–2349.

    Article  CAS  PubMed  Google Scholar 

  55. Suzuki H, Yamamoto E, Nojima M, et al. Methylation-associated silencing of microRNA-34b/c in gastric cancer and its involvement in an epigenetic field defect. Carcinogenesis. 2010;31:2066–2073.

    Article  CAS  PubMed  Google Scholar 

  56. Xu L, Wang F, Xu XF, et al. Down-regulation of miR-212 expression by DNA hypermethylation in human gastric cancer cells. Med Oncol. 2011;28:S189–S196.

    Article  PubMed  Google Scholar 

  57. Chen Q, Chen X, Zhang M, Fan Q, Luo S, Cao X. miR-137 is frequently down-regulated in gastric cancer and is a negative regulator of Cdc42. Dig Dis Sci. 2011;56:2009–2016.

    Article  CAS  PubMed  Google Scholar 

  58. Kim K, Lee HC, Park JL, et al. Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics. 2011;6:740–751.

    Article  CAS  PubMed  Google Scholar 

  59. Liu M, Yang S, Wang Y, et al. EB1 acts as an oncogene via activating beta-catenin/TCF pathway to promote cellular growth and inhibit apoptosis. Mol Carcinog. 2009;48:212–219.

    Article  CAS  PubMed  Google Scholar 

  60. Tang H, Yao L, Tao X, et al. miR-9 functions as a tumor suppressor in ovarian serous carcinoma by targeting TLN1. Int J Mol Med. 2013;32:381–388.

    Google Scholar 

  61. Zheng L, Qi T, Yang D, et al. microRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PLoS ONE. 2013;8:e55719.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Arora H, Qureshi R, Jin S, Park AK, Park WY. miR-9 and let-7g enhance the sensitivity to ionizing radiation by suppression of NFκB1. Exp Mol Med. 2011;43:298–304.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Hildebrandt MA, Gu J, Lin J, et al. Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene. 2010;29:5724–5728.

    Article  CAS  PubMed  Google Scholar 

  64. Tsai KW, Liao YL, Wu CW, et al. Aberrant hypermethylation of miR-9 genes in gastric cancer. Epigenetics. 2011;6:1189–1197.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Tsai KW, Wu CW, Hu LY, et al. Epigenetic regulation of miR-34b and miR-129 expression in gastric cancer. Int J Cancer. 2011;129:2600–2610.

    Article  CAS  PubMed  Google Scholar 

  66. Li CL, Nie H, Wang M, et al. MicroRNA-155 is downregulated in gastric cancer cells and involved in cell metastasis. Oncol Rep. 2012;27:1960–1966.

    PubMed  Google Scholar 

  67. Peek RM Jr, Crabtree JE. Helicobacter infection and gastric neoplasia. J Pathol. 2006;208:233–248.

    Article  CAS  PubMed  Google Scholar 

  68. Hatakeyama M. Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer. 2004;4:688–694.

    Article  CAS  PubMed  Google Scholar 

  69. Hayashi Y, Tsujii M, Wang J, et al. CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut. 2013;62:1536–1546.

    Google Scholar 

  70. Deng H, Guo Y, Song H, et al. MicroRNA-195 and microRNA-378 mediate tumor growth suppression by epigenetical regulation in gastric cancer. Gene. 2013;518:351–359.

    Article  CAS  PubMed  Google Scholar 

  71. Wu H, Huang M, Lu M, et al. Regulation of microtubule-associated protein tau (MAPT) by miR-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel. Cancer Chemother Pharmacol. 2013;71:1159–1171.

    Article  CAS  PubMed  Google Scholar 

  72. Lei H, Zou D, Li Z, Luo M, et al. MicroRNA-219-2-3p functions as a tumor suppressor in gastric cancer and is regulated by DNA methylation. PLoS ONE. 2013;8:e60369.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Kong W, He L, Richards EJ, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2013 (Epub ahead of print). doi:10.1038/onc.2012.636.

  74. Zhang GJ, Xiao HX, Tian HP, Liu ZL, Xia SS, Zhou T. Upregulation of microRNA-155 promotes the migration and invasion of colorectal cancer cells through the regulation of claudin-1 expression. Int J Mol Med. 2013;31:1375–1380.

    CAS  PubMed  Google Scholar 

  75. Liu Q, Chen J, Wang J, et al. Putative tumor suppressor gene SEL1L was downregulated by aberrantly upregulated hsa-mir-155 in human pancreatic ductal adenocarcinoma. Mol Carcinog. 2013 (Epub ahead of print). doi:10.1002/mc.22023.

  76. Langevin SM, Stone RA, Bunker CH, Grandis JR, Sobol RW, Taioli E. MicroRNA-137 promoter methylation in oral rinses from patients with squamous cell carcinoma of the head and neck is associated with gender and body mass index. Carcinogenesis. 2010;31:864–870.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Kalimutho M, Di Cecilia S, Del Vecchio Blanco G, et al. Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer. Br J Cancer. 2011;104:1770–1778.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Kamimae S, Yamamoto E, Yamano HO, et al. Epigenetic alteration of DNA in mucosal wash fluid predicts invasiveness of colorectal tumors. Cancer Prev Res (Phila). 2011;4:674–683.

    Article  CAS  Google Scholar 

  79. Maekita T, Nakazawa K, Mihara M, et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res. 2006;12:989–995.

    Article  CAS  PubMed  Google Scholar 

  80. Santos FP, Kantarjian H, Garcia-Manero G, Issa JP, Ravandi F. Decitabine in the treatment of myelodysplastic syndromes. Expert Rev Anticancer Ther. 2010;10:9–22.

    Article  CAS  PubMed  Google Scholar 

  81. Sato N, Maehara N, Su GH, Goggins M. Effects of 5-aza-2′-deoxycytidine on matrix metalloproteinase expression and pancreatic cancer cell invasiveness. J Natl Cancer Inst. 2003;95:327–330.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by Grants from the National Natural Scientific Foundation of China (81100714, 81171923), the Foundation of Shaanxi Province Science and Technology research (2012KJXX-20), and the Top Ph.D. Foundation of China (201075).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liu Hong or Daiming Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Hong, L., Chen, Z. et al. Epigenetic Regulation of microRNAs in Gastric Cancer. Dig Dis Sci 59, 716–723 (2014). https://doi.org/10.1007/s10620-013-2939-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2939-8

Keywords

Navigation