Skip to main content
Log in

Phase-state identification bypass method for three-phase thermal compositional simulation

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, we propose a strategy to bypass the phase identification of fluid mixtures that can form three, or more, phases. The strategy is used for reservoir simulation of multicomponent, three-phase, thermal compositional displacement processes. Since the solution path in compositional space is determined by a limited number of “key” tie-simplexes, the proposed “bypass” method uses information from the parameterized tie-simplexes and their extensions. The tie-simplex parameterization is performed in the discrete phase-fraction space. Once the phase-fraction space is discretized, a conventional three-phase flash is used adaptively to compute the phase states at the discretization nodes. If all discretization vertices of a given discrete cell, in phase-fraction space, have the same phase state, then this state is assigned to the entire cell and expensive flash calculations are bypassed. We demonstrate the robustness and efficiency of our phase identification bypassing strategy for several cases with three-phase flow, including a six-component ES-SAGD (enhanced solvent SAGD) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acs, G., Doleshall, S., Farkas, E.: General purpose compositional model. SPE J. 25, 543–553 (1985)

    Article  Google Scholar 

  2. Aziz, K., Wong, T.: Considerations in the development of multipurpose reservoir simulation models. In: proceedings of the 1st and 2nd International Forum on Reservoir Simulation, Alpbach, Austria (1989)

  3. Butler, R., Mcnab, G., H.Y.: Theoretical studies on the gravity drainage of heavy oil during in situ steam heating. Canadian Journal Chemical Engineering 59 (1981)

  4. Christie, M., Blunt, M.: Tenth spe comparative solution project: a comparison of upscaling techniques. SPE Reserv. Eval. Eng. SPE 72469 (2001)

  5. Coats, K.H.: An equation of state compostional model. SPE J. 20, 363–376 (1980)

    Article  Google Scholar 

  6. Dindoruk, B., Orr, F.M., Johns, R.T.: Theory of multicontact miscible displacement with nitrogen. SPE J. 2, 268–279 (1997)

    Article  Google Scholar 

  7. Orr Jr, F.M.: Theory of Gas Injection Processes, Tie-Line Publications, Copenhagen, Denmark (2007)

  8. Firoozabadi, A., Pan, H.: Fast and robust algorithm for compositional modeling: Part i—stability analysis testing. SPE J. 7, 78–89 (2002)

    Article  Google Scholar 

  9. Haugen, K., Beckner, B.L.: A critical comparison of reduced and conventional eos algorithms. SPE J. 18, 378–388 (2013)

    Article  Google Scholar 

  10. Heidari, M.: Equation of state based thermal compositional reservoir simulator for hybrid solvent/thermal processes. PhD Thesis, UNIVERSITY OF CALGARY (2014)

  11. Iranshahr, A.: Tie-simplex method for thermal-compositional simulation. PhD Thesis, Stanford University (2012)

  12. Iranshahr, A., Voskov, D., Tchelepi, H.A.: A generalized negative flash procedure for phase equilibrium computations related to carbon dioxide sequestration. In: proceedings AIChE Annual Meeting, Nashville, TN (2009)

  13. Iranshahr, A., Voskov, D., Tchelepi, H.A.: Tie-simplex parameterization for eos-based thermal compositional simulation. SPE J. 15, 537–548 (2010)

    Article  Google Scholar 

  14. Iranshahr, A., Voskov, D., Tchelepi, H.A.: Gibbs energy analysis: compositional tie-simplex space. Fluid Phase Equilib. 321, 49–58 (2012)

    Article  Google Scholar 

  15. Iranshahr, A., Voskov, D., Tchelepi, H.A.: A negative-flash tie-simplex approach for multiphase reservoir simulation. SPE J. 18, 1,140–1,149 (2013)

    Article  Google Scholar 

  16. Lucia, A., Feng, Y.: Multivariable terrain methods. AIChE J. 49, 2553–2563 (2003)

    Article  Google Scholar 

  17. Michelsen, M.: Simplified flash calculations for cubic equations of state. Industrial and Engineering Chemestry Process Design and Development 25 (1986)

  18. Nasr, T., Isaacs, E.E.: Process of enchancing hydrocarbon mobility using a steam additive (2001)

  19. Nichita, D., Petitfrere, M.: Phase stability analysis using a reduction method. Fluid Phase Equilib. 358, 27–39 (2013)

    Article  Google Scholar 

  20. Okuno, R., Johns, R., Sepehrnoori, K.: Application of a reduced method in compositional simulation. SPE J. 15, 39–49 (2010)

    Article  Google Scholar 

  21. Orr, F.M., Johns, R., Dindoruk, B.: Development of miscibility in four-component co2 floods. SPE Reserv. Eng. 8, 135–142 (1993)

    Article  Google Scholar 

  22. Pan, H., Tchelepi, H.: Compositional flow simulation using reduced-variables and stability-analysis bypassing. SPE 142189-MS (2011)

  23. Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. 15, 59–64 (1976)

    Google Scholar 

  24. Petitfrere, M., Nichita, D.V.: Robust and efficient trust-region based stability analysis and multiphase flash calculations. Fluid Phase Equilib. 362, 51–68 (2014)

    Article  Google Scholar 

  25. Rannou, G., Voskov, D., Tchelepi, H.A.: Tie-line-based k-value method for compositional simulation. SPE J. 18, 1,112–1,122 (2013)

    Article  Google Scholar 

  26. Rasmussen, C., Krejbjerg, K., Michelsen, M., Bjurstrom, K.: Increasing computational speed of flash calculations with applications for compositional, transient simulations. SPE Reserv. Eval. Eng. 9, 32–38 (2006)

    Article  Google Scholar 

  27. Rezaveisi, M., Sepehrnoori, K., Johns, R.: Tie-simplex-based phase-behavior modeling in an impec reservoir simulator. SPE J. 19 (2014)

  28. Mohebbinia, S., Sepehrnoori, K., Johns, R.: Four-phase equilibrium calculations of carbon dioxide/hydrocarbon/water systems with a reduced method. SPE J. 18 (2013)

  29. Soave, G.: Equilibrium constants from a modified redlich-kwong equation of state. Chem. Eng. Sci. 27, 1197–1203 (1972)

    Article  Google Scholar 

  30. Voskov, D.V., Tchelepi, H.A.: Compositional space parameterization for miscible displacement simulation. Transp. Porous. Med. 75, 111–128 (2008)

    Article  Google Scholar 

  31. Voskov, D.V., Tchelepi, H.A.: Compositional space parameterization: theory and application for immiscible displacements. SPE J. 14, 431–440 (2009)

    Article  Google Scholar 

  32. Voskov, D.V., Tchelepi, H.A.: Tie-simplex based mathematical framework for thermodynamical equilibrium computation of mixtures with an arbitrary number of phases. Fluid Phase Equilib. 283(1–2), 1–11 (2009)

    Article  Google Scholar 

  33. Young, L., Stephensen, R.: A generalized compositional approach for reservoir simulation. SPE J. 23, 727–742 (1983)

    Article  Google Scholar 

  34. Zaydullin, R., Voskov, D.V., Tchelepi, H.A.: Non-iterative phase behavior computation for general compositional problem. In: Proceedings of ECMOR XII European Conference on the Mathematics of Oil Recovery (2010)

  35. Zaydullin, R., Voskov, D.V., Tchelepi, H.A.: Nonlinear formulation based on an equation-of-state (eos) free method for compositional flow simulation. SPE J. 18, 264–273 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zaydullin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaydullin, R., Voskov, D.V. & Tchelepi, H.A. Phase-state identification bypass method for three-phase thermal compositional simulation. Comput Geosci 20, 461–474 (2016). https://doi.org/10.1007/s10596-015-9510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9510-y

Keywords

Navigation