Skip to main content

Advertisement

Log in

Comparative survey of within-river genetic structure in Atlantic salmon; relevance for management and conservation

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

In wild populations, defining the spatial scale at which management and conservation practices should focus remains challenging. In Atlantic salmon, compelling evidence suggests that genetic structure within rivers occurs, casting doubt on the underlying premise of the river-based management approach for this species. However, no comparisons of within-river genetic structure across different systems have been performed yet to assess the generality of this pattern. We compared the within-river genetic structure of four important salmon rivers in North America and evaluated the extent of genetic differentiation among their main tributaries. We found a hierarchical genetic structure at the river and tributary levels in most water systems, except in the Miramichi where panmixia could not be rejected. In the other cases, genetic differentiation between most tributaries was significant and could be as high as that found between rivers of the same geographical region. More importantly, the extent of genetic differentiation between tributaries varied greatly among water systems, from well differentiated (θST = 0.035) to undifferentiated (θST = −0.0003), underlying the difficulty in generalizing the ubiquity of within-river genetic structure in Atlantic salmon. Thus, this study underlines the importance of evaluating the genetic structure of Atlantic salmon in large water systems on a case by case basis in order to define the most appropriate spatial scale and focal unit for efficient management and conservation actions. The potential consequences of management at an inappropriate spatial scale are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albert V, Bernatchez L (2006) Complexe de la Romaine. Caractérisation génétique des populations de saumon atlantique. Presented to GENIVAR and Hydro-Québec, Québec

  • Allendorf FW, Leary RF, Hitt NP et al (2004) Intercrosses and the U.S. Endangered Species Act: should hybridized populations be included as Westslope Cutthroat Trout? Conserv Biol 18:1203–1213. doi:10.1111/j.1523-1739.2004.00305.x

    Article  Google Scholar 

  • Aubin-Horth N, Ryan DAJ, Good SP, Dodson JJ (2005) Balancing selection on size: effects on the incidence of an alternative reproductive tactic. Evol Ecol Res 7:1171–1182

    Google Scholar 

  • Aubin-Horth N, Bourque J-F, Daigle G, Hedger R, Dodson JJ (2006) Longitudinal gradients in threshold sizes for alternative male life history tactics in a population of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 63:2067–2075. doi:10.1139/F06-103

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2000) GENETIX 4.02, logiciel sous WindowsTM pour la génétique des populations. CNRS UPR 9060, Université Montpellier II, Montpellier

    Google Scholar 

  • Caballero A (1994) Developments in the prediction of effective population size. Heredity 73:657–679. doi:10.1038/hdy.1994.174

    Article  PubMed  Google Scholar 

  • Caron F, Fontaine P-M, Cauchon V (2005) États des stocks de saumon au Québec en 2005. Ministère des Ressources naturelles et de la Faune du Québec, Québec

    Google Scholar 

  • Castric V, Bernatchez L (2004) Individual assignment test reveals differential restriction to dispersal between two salmonids despite no increase of genetic differences with distance. Mol Ecol 13:1299–1312. doi:10.1111/j.1365-294X.2004.02129.x

    Article  PubMed  CAS  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 32:550–570. doi:10.2307/2406616

    Article  Google Scholar 

  • Chaput G, Moore D, Hayward J, Shaesgreen J, Dubee B (2001) Stock Status of Atlantic Salmon (Salmo salar) in the Miramichi River, 2000. DFO Canadian Stock Assessment Secretariat Research Document 2001(008)

  • Dillane E, Cross MC, Dillane E et al (2007) Spatial and temporal patterns in microsatellite DNA variation of wild Atlantic salmon, Salmo salar, in irish rivers. Fish Manag Ecol 14:209–219. doi:10.1111/j.1365-2400.2007.00544.x

    Article  Google Scholar 

  • Dionne M, Miller KM, Dodson JJ, Caron F, Bernatchez L (2007) Clinal variation in MHC diversity with temperature: evidence for the role of host-pathogen interaction on local adaptation in Atlantic salmon. Evolution 61:2154–2164. doi:10.1111/j.1558-5646.2007.00178.x

    Article  PubMed  CAS  Google Scholar 

  • Dionne M, Caron F, Dodson JJ, Bernatchez L (2008) Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Mol Ecol 17:2382–2396. doi:10.1111/j.1365-294X.2008.03771.x

    Article  PubMed  CAS  Google Scholar 

  • Dodson JJ, Colombani F (1997) The genetic identity of the Clearwater Brook population of Atlantic salmon (Salmo salar); a temporal and spatial study of Atlantic salmon population genetic structure in the Miramichi, St. John and Margaree Rivers. Presented to Dr. F. Whoriskey, Atlantic Salmon Federation, St. Andrews, New Brunswick. http://www.bio.ulaval.ca/cirsa/pages_annexes/annexe4.htm#rapports

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed  CAS  Google Scholar 

  • Felsenstein J (2004) PHYLIP, phylogeny inference package version 3.6. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Fontaine P-M, Dodson JJ, Bernatchez L, Slettan A (1997) A genetic test of metapopulation structure in Atlantic salmon (Salmo salar) using microsatellites. Can J Fish Aquat Sci 54:2434–2442. doi:10.1139/cjfas-54-10-2434

    Article  Google Scholar 

  • Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140. doi:10.1016/j.biocon.2005.05.002

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Fraser D, Bernatchez L (2001) Adaptative evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752

    PubMed  CAS  Google Scholar 

  • Garant D, Dodson JJ, Bernatchez L (2000) Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar L.). Mol Ecol 9:615–628. doi:10.1046/j.1365-294x.2000.00909.x

    Article  PubMed  CAS  Google Scholar 

  • Garant D, Forde SE, Hendry AP (2007) The multifarious effects of dispersal and gene flow on contemporary adaptation. Funct Ecol 21:434–443. doi:10.1111/j.1365-2435.2006.01228.x

    Article  Google Scholar 

  • Garcia de Leaniz C, Fleming IA, Einum S et al (2007) A critical review of adaptive genetic variation in Atlantic salmon: implication for conservation. Biol Rev Camb Philos Soc 82:173–211. doi:10.1111/j.1469-185X.2006.00004.x

    Article  PubMed  CAS  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3. Institut d’Écologie, Université de Lausanne, Lausanne

    Google Scholar 

  • Hansen MM, Ruzzante DE, Nielsen EE, Bekkevold D, Mensberg KL (2002) Long-term effective population size, temporal stability of genetic composition and potential for local adaptation in anadromous brown trout (Salmo trutta) populations. Mol Ecol 11:2523–2535. doi:10.1046/j.1365-294X.2002.01634.x

    Article  PubMed  Google Scholar 

  • Hartl DL, Clark AG (1988) Principles of population genetics. Sinauer Associates, Sunderland

    Google Scholar 

  • Jordan WC, Youngson AF, Hay DW, Ferguson A (1992) Genetic protein variation in natural populations of Atlantic salmon (Salmo salar) in Scotland: temporal and spatial variation. Can J Fish Aquat Sci 49:1863–1872. doi:10.1139/f92-206

    Article  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi:10.1111/j.1461-0248.2004.00684.x

    Article  Google Scholar 

  • Kerswill CJ (1971) Relative rates of utilization by commercial and sport fisheries of Atlantic salmon (Salmo salar) from the Miramichi River, New Brunswick. J Fish Res Bd Can 28:351–363

    Google Scholar 

  • King TL, Eackles MS, Letcher BH (2005) Microsatellite DNA markers for the study of Atlantic salmon (Salmo salar) kinship, population structure, and mixed-fishery analyses. Mol Ecol Notes 5:130–132. doi:10.1111/j.1471-8286.2005.00860.x

    Article  CAS  Google Scholar 

  • Landry C, Bernatchez L (2001) Comparative analysis of population structure across environments and geographical scales at major histocompatibility complex and microsatellite loci in Atlantic salmon (Salmo salar). Mol Ecol 10:2525–2539. doi:10.1046/j.1365-294X.2001.01383.x

    Article  PubMed  CAS  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189. doi:10.1016/S0169-5347(02)02497-7

    Article  Google Scholar 

  • McConnell SKJ, Ruzzante DE, O’Reilly PT, Hamilton L, Wright JM (1997) Microsatellite loci reveal highly significant genetic differentiation among Atlantic salmon (Salmo salar L.) stocks from the East coast of Canada. Mol Ecol 6:1075–1089. doi:10.1046/j.1365-294X.1997.00282.x

    Article  Google Scholar 

  • Møller D (2005) Genetic studies on serum transferrins in Atlantic salmon. J Fish Biol 67(Suppl A):55–67. doi:10.1111/j.0022-1112.2005.00839.x

    Article  Google Scholar 

  • Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:373–375. doi:10.1016/0169-5347(94)90057-4

    Article  Google Scholar 

  • Nunney L (1999) The effective size of a hierarchical structured population. Evolution 53:1–10. doi:10.2307/2640915

    Article  Google Scholar 

  • O’Reilly PT, Hamilton L, McConnell SKJ, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can J Fish Aquat Sci 53:2292–2298. doi:10.1139/cjfas-53-10-2292

    Article  Google Scholar 

  • Østergaard S, Hansen MM, Loeschcke V, Nielsen EE (2003) Long-term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol Ecol 12:3123–3135. doi:10.1046/j.1365-294X.2003.01976.x

    Article  PubMed  Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Palsbøll PJ, Bérubé M, Allendorf FW (2006) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16. doi:10.1016/j.tree.2006.09.003

    Article  PubMed  Google Scholar 

  • Paterson S, Piertney SB, Knox D, Gilbey J, Verspoor E (2004) Characterization and PCR multiplexing of novel highly variable tetranucleotide Atlantic salmon (Salmo salar L.) microsatellites. Mol Ecol Notes 4:160–162. doi:10.1111/j.1471-8286.2004.00598.x

    Article  CAS  Google Scholar 

  • Pertoldi C, Bijlsma R, Loeschcke V (2007) Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges. Biodivers Conserv 16:4147–4163. doi:10.1007/s10531-007-9212-4

    Article  Google Scholar 

  • Potvin C, Bernatchez L (2001) Lacustrine spatial distribution of landlocked Atlantic salmon populations assessed across generations by multilocus individual assignment and mixed-stock analyses. Mol Ecol 10:2375–2388. doi:10.1046/j.0962-1083.2001.01374.x

    Article  PubMed  CAS  Google Scholar 

  • Presa P, Guyomard R (1996) Conservation of microsatellites in three species of salmonids. J Fish Biol 49:1326–1329

    Google Scholar 

  • Primmer CR, Veselov AJ, Zubchenko A et al (2006) Isolation by distance within a river system: genetic population structuring of Atlantic salmon, Salmo salar, in tributaries of the Varzuga River in northwest Russia. Mol Ecol 15:653–666. doi:10.1111/j.1365-294X.2005.02844.x

    Article  PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens P, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (version 3.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi:10.2307/2409177

    Article  Google Scholar 

  • Ryman N, Utter F (1987) Population genetics and fishery management. University of Washington Press, Seattle

    Google Scholar 

  • Schlötterer C (2002) A microsatellite-based multilocus screen for the identification of local selective sweeps. Genetics 160:753–763

    PubMed  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2006) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33. doi:10.1016/j.tree.2006.08.009

    Article  PubMed  Google Scholar 

  • Sinclair M (1988) Marine populations. An essay on population regulation and speciation. University of Washington Press, Seattle

    Google Scholar 

  • Sinclair M, Iles TD (1988) Population richness of marine fish species. Aquat Living Resour 1:71–83. doi:10.1051/alr:1988009

    Article  Google Scholar 

  • Slettan A, Olsaker I, Lie O (1995) Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Anim Genet 26:281–282

    PubMed  CAS  Google Scholar 

  • Spidle AP (2001) Fine-scale population structure in Atlantic salmon from Maine’s Penobscot river drainage. Conserv Genet 2:11–24. doi:10.1023/A:1011580217381

    Article  CAS  Google Scholar 

  • Spidle AP, Kalinowski ST, Lubinski BA et al (2003) Population structure of Atlantic salmon in Maine with reference to populations from Atlantic Canada. Trans Am Fish Soc 132:196–209. doi :10.1577/1548-8659(2003)132<0196:PSOASI>2.0.CO;2

    Article  Google Scholar 

  • Stabell OB (1984) Homing and olfaction in salmonids: a critical review with special references to the Atlantic salmon. Biol Rev Camb Philos Soc 59:333–388. doi:10.1111/j.1469-185X.1984.tb00709.x

    Article  CAS  Google Scholar 

  • Ståhl G (1987) Genetic population structure of Atlantic salmon. In: Ryman N, Utter F (eds) Population genetics and fisheries management. University of Washington Press, Seattle

    Google Scholar 

  • Taylor EB (1991) A review of local adaptation in salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98:185–207. doi:10.1016/0044-8486(91)90383-I

    Article  Google Scholar 

  • Tessier N, Bernatchez L (1999) Stability of population structure and genetic diversity across generations assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L.). Mol Ecol 8:169–179. doi:10.1046/j.1365-294X.1999.00547.x

    Article  Google Scholar 

  • Vähä J-P, Erkinaro J, Niemelä E, Primmer CR (2007) Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol Ecol 16:2638–2654. doi:10.1111/j.1365-294X.2007.03329.x

    Article  PubMed  Google Scholar 

  • Vähä J-P, Erkinaro J, Niemelä E, Primmer CR (2008) Temporally stable genetic structure and low migration in an Atlantic salmon population complex: implications for conservation and management. Evol Appl 1:137–154. doi:10.1111/j.1752-4571.2007.00007.x

    Article  Google Scholar 

  • van Oosterhout CV, Hutchinson WF, Willis DPM (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Verspoor E, Beardmore JA, Consuegra S et al (2005) Population structure in the Atlantic salmon: insights from 40 years of research into genetic protein variation. J Fish Biol 67:3–54. doi:10.1111/j.0022-1112.2005.00838.x

    Article  CAS  Google Scholar 

  • Waples RS (1995) Evolutionarily significant units and the conservation of biological diversity under the Endangered Species Act. Am Fish Soc Symp 17:8–27

    Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439. doi:10.1111/j.1365-294X.2006.02890.x

    Article  PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi:10.2307/2408641

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank F. Barnard, A. Gaudreault, J. Labonté and A. Chenel from the Ministère des Ressources Naturelles et de la Faune du Québec (MRNF), as well as G. Chaput from the Department of Fisheries and Oceans Canada (DFO) for their help in collecting samples for the Moisie, Miramichi and Restigouche water systems. Special thanks to D.C. Christ and the Moisie Salmon Club for their financial support during field work on the Moisie water system. Many thanks to R. Firth and the ‘Corporation de gestion des rivières Matapédia et Patapédia’ for their help in the field for the Restigouche water system. We thank Hydro-Québec for sharing samples and genetic data from the Romaine water system. We also thank K. Giguère, C. Potvin, L. Papillon and V. Albert for technical and laboratory assistance. We finally thank N. Brodeur, the associate editor C. Primmer and two anonymous reviewers for valuable comments on the manuscript. Funding for this project was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC, collaborative project) to L.B. and J.J.D. and from MRNF. Funding from NSERC financially supported M.D. This study is a contribution to the research programs of Québec-Océan and Centre Interuniversitaire de Recherche sur le Saumon Atlantique (CIRSA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mélanie Dionne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dionne, M., Caron, F., Dodson, J.J. et al. Comparative survey of within-river genetic structure in Atlantic salmon; relevance for management and conservation. Conserv Genet 10, 869–879 (2009). https://doi.org/10.1007/s10592-008-9647-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-008-9647-5

Keywords

Navigation