Skip to main content

Advertisement

Log in

Inhibition of osteolytic bone metastasis by unfractionated heparin

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

In the current study, we examine heparin’s anti-metastatic properties by using a well-defined mouse model of osteolytic bone metastasis. C57BL/6 mice were treated with increasing doses of unfractionated heparin (15, 20, or 25 units/mouse) 30 min prior to the left ventricular injection of GFP-transfected B16F10 melanoma cells. Heparin’s effect on tumour burden and bone strength was then quantified 14 days later by bone histomorphometry and biomechanical testing, respectively. Based on histomorphometric analysis of the femurs, injection of GFP-transfected melanoma cells resulted in a 37% decrease in cancellous bone volume and a 68% increase in osteoclast surface. This was associated with a 13% reduction in bone strength as measured by biomechanical testing. However, when the mice were first pre-treated with 25 units of heparin, tumour burden was decreased by 73% and tumour cell-dependent decreases in both cancellous bone volume and bone strength were prevented. Based on these observations, we conclude that heparin inhibits the ability of tumour cells to metastasize to bone and that as such, prevents tumour cell-induced decreases in bone strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mundy GR (2002) Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer 2:584–593. doi:10.1038/nrc867

    Article  PubMed  CAS  Google Scholar 

  2. Carty NJ, Foggitt A, Hamilton CR et al (1995) Patterns of clinical metastasis in breast cancer: an analysis of 100 patients. Eur J Surg Oncol 21:607–608. doi:10.1016/S0748-7983(95)95176-8

    Article  PubMed  CAS  Google Scholar 

  3. Naume B, Borgen E, Kvalheim G et al (2001) Detection of isolated tumor cells in bone marrow in early-stage breast carcinoma patients: comparison with preoperative clinical parameters and primary tumor characteristics. Clin Cancer Res 7:4122–4129

    PubMed  CAS  Google Scholar 

  4. Taback B, Giuliano AE, Hansen NM et al (2003) Detection of tumor-specific genetic alterations in bone marrow from early-stage breast cancer patients. Cancer Res 63:1884–1887

    PubMed  CAS  Google Scholar 

  5. Kakkar AK, Hedges AR, Williamson RCN (1995) Perioperative heparin therapy inhibits late deaths from metastatic cancer. Int J Oncol 6:885–888

    Google Scholar 

  6. Lebeau B, Chastang C, Brechot JM et al (1994) Subcutaneous heparin treatment increases survival in small cell lung cancer. Cancer 74:38–45. doi :10.1002/1097-0142(19940701)74:1<38::AID-CNCR2820740108>3.0.CO;2-E

  7. Prandoni P, Lensing AWA, Buller HR (1992) Comparison of subcutaneous low-molecular-weight heparin with intravenous standard heparin in proximal deep-vein thrombosis. Lancet 339:441–445. doi:10.1016/0140-6736(92)91054-C

    Article  PubMed  CAS  Google Scholar 

  8. von Tempelhoff GF, Harenberg J, Niemann F (2000) Effect of low molecular weight heparin (certoparin) versus unfractionated heparin on cancer survival following breast and pelvic cancer surgery: a prospective randomized double-blind trial. Int J Oncol 16:815–824

    Google Scholar 

  9. Altinbas M, Coskun HS, Er O et al (2004) A randomized clinical trial of combination chemotherapy with and without low-molecular-weight heparin in small cell lung cancer. J Thromb Haemost 2:1266–1271. doi:10.1111/j.1538-7836.2004.00871.x

    Article  PubMed  CAS  Google Scholar 

  10. Kakkar AK, Levine MN, Kadziola Z (2004) Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS). J Clin Oncol 22:1944–1948. doi:10.1200/JCO.2004.10.002

    Article  PubMed  CAS  Google Scholar 

  11. Smorenburg SM, Vink R, Otten HM (2001) The effects of vitamin K-antagonists on survival of patients with malignancy: a systematic analysis. Thromb Haemost 86:1586–1587

    PubMed  CAS  Google Scholar 

  12. Hirsh J, Warkentin TE, Shaughnessy SG et al (2001) Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy and safety. Chest 119:64S–94S. doi:10.1378/chest.119.1_suppl.64S

    Article  PubMed  CAS  Google Scholar 

  13. Rabenstein DL (2002) Heparin and heparan sulfate: structure and function. Nat Prod Rep 19:312–331. doi:10.1039/b100916h

    Article  PubMed  CAS  Google Scholar 

  14. Harrop HA, Rider CC (1998) Heparin and its derivatives bind to HIV-1 recombinant envelope glycoproteins, rather than to recombinant HIV-1 receptor, CD4. Glycobiology 8:131–137. doi:10.1093/glycob/8.2.131

    Article  PubMed  CAS  Google Scholar 

  15. Howell AL, Taylor TH, Miller JD et al (1996) Inhibition of HIV-1 infectivity by low molecular weight heparin. Results of in vitro studies and a pilot clinical trial in patients with advanced AIDS. Int J Clin Lab Res 26:124. doi:10.1007/BF02592355

    Article  PubMed  CAS  Google Scholar 

  16. Nelson RM, Cecconi O, Roberts WG et al (1993) Heparin oligosaccharides bind L- and P-selectin and inhibit acute inflammation. Blood 82:3253–3258

    PubMed  CAS  Google Scholar 

  17. Tyrrell DJ, Horne AP, Holme KR et al (1999) Heparin in inflammation: potential therapeutic applications beyond anticoagulation. Adv Pharmacol 46:151–208. doi:10.1016/S1054-3589(08)60471-8

    Article  PubMed  CAS  Google Scholar 

  18. Muir JM, Andrew M, Hirsh J et al (1996) Histomorphometric analysis of the effects of standard heparin on trabecular bone in vivo. Blood 88:1314–1320

    PubMed  CAS  Google Scholar 

  19. Muir JM, Hirsh J, Weitz JI et al (1997) A histomorphometric comparison of the effects of heparin and low-molecular-weight heparin on cancellous bone in rats. Blood 89:3236–3242

    PubMed  CAS  Google Scholar 

  20. Einhorn TA (1992) Bone strength: the bottom line. Calcif Tissue 51:333–339. doi:10.1007/BF00316875

    Article  CAS  Google Scholar 

  21. Rubin CT, Rubin J (1999) Biomechanics of bone. In: Favus M (ed) Primer on the metabolic bone diseases and disorders of mineral. Lippincott, Williams and Wilkins, Philadelphia, pp 39–42

    Google Scholar 

  22. Ludwig RJ, Alban S, Bistrian R et al (2006) The ability of different forms of heparins to suppress P-selectin function in vitro correlates to their inhibitory capacity on bloodborne metastasis in vivo. Thromb Haemost 95:535–540

    PubMed  CAS  Google Scholar 

  23. Bereczky B, Gilly R, Raso E et al (2005) Selective antimetastatic effect of heparins in preclinical human melanoma models is based on inhibition of migration and microvascular arrest. Clin Exp Metastasis 22:69–76. doi:10.1007/s10585-005-3859-6

    Article  PubMed  CAS  Google Scholar 

  24. Mousa SA, Lindhardt R, Francis JL et al (2006) Anti-metastatic effect of a non-anticoagulant low-molecular-weight heparin versus the standard low-molecular-weight heparin, enoxaparin. Thromb Haemost 96:816–821

    PubMed  CAS  Google Scholar 

  25. Ludwig RJ, Boehme B, Podda M et al (2004) Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis. Cancer Res 64:2743–2750. doi:10.1158/0008-5472.CAN-03-1054

    Article  PubMed  CAS  Google Scholar 

  26. Canon JR, Roudier M, Bryant R et al (2008) Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis 25:119–129. doi:10.1007/s10585-007-9127-1

    Article  PubMed  CAS  Google Scholar 

  27. Morony S, Capparelli C, Sarosi I et al (2001) Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 61:4432–4436

    PubMed  CAS  Google Scholar 

  28. Zhang J, Dai J, Qi Y et al (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest 107:1235–1244. doi:10.1172/JCI11685

    Article  PubMed  CAS  Google Scholar 

  29. Yoneda T, Michigami T, Yi B et al (2000) Actions of bisphosphonate on bone metastasis in animal models of breast carcinoma. Cancer 88:2979–2988. doi :10.1002/1097-0142(20000615)88:12+<2979::AID-CNCR13>3.0.CO;2-U

  30. Tannehill-Gregg SH, Levine AL, Nadella MVP et al (2006) The effect of zoledronic acid and osteoprotegerin on growth of human lung cancer in the tibias of nude mice. Clin Exp Metastasis 23:19–31. doi:10.1007/s10585-006-9008-z

    Article  PubMed  CAS  Google Scholar 

  31. Shaughnessy SG, Young E, Deschamps P et al (1995) The effects of low molecular weight and standard heparin on calcium loss from fetal rat calvaria. Blood 86:1368–1373

    PubMed  CAS  Google Scholar 

  32. Shigemori C, Wada H, Matsumoto K et al (1998) Tissue factor expression and metastatic potential of colorectal cancer. Thromb Haemost 80:894–898

    PubMed  CAS  Google Scholar 

  33. Kaushal V, Mukunyadzi P, Siegel ER et al (2008) Expression of tissue factor in prostate cancer correlates with malignant phenotype. Appl Immunohistochem Mol Morphol 16:1–6

    PubMed  CAS  Google Scholar 

  34. Ueno T, Toi M, Koike M et al (2000) Tissue factor expression in breast cancer tissues: its correlation with prognosis and plasma concentration. Br J Cancer 83:164–170. doi:10.1054/bjoc.2000.1272

    Article  PubMed  CAS  Google Scholar 

  35. Mueller BM, Reisfeld RA, Edgington TS et al (1992) Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci USA 89:11832–11836. doi:10.1073/pnas.89.24.11832

    Article  PubMed  CAS  Google Scholar 

  36. Camerer E, Qazi AA, Duong DN et al (2005) Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 104:397–401. doi:10.1182/blood-2004-02-0434

    Article  CAS  Google Scholar 

  37. Karpatikin S, Pearlstein E, Ambrogio C et al (1988) Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 81:1012–1019. doi:10.1172/JCI113411

    Article  Google Scholar 

  38. Cohen SA, Trikha M, Mascelli MA (2000) Potential future clinical applications for the GPIIb/IIIa antagonist, abciximab in thrombosis, vascular oncological indications. Pathol Oncol Res 6:163–174

    Article  PubMed  CAS  Google Scholar 

  39. Amirkhosravi A, Mousa SA, Amaya M et al (2004) Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GPIIb/IIIa antagonist XV454. Thromb Haemost 90:549–554

    Google Scholar 

  40. Stevenson JL, Choi SH, Varki A (2005) Differential metastasis inhibition by clinically relevant levels of heparins—correlation with selectin inhibition, not antithrombotic activity. Clin Cancer Res 11:7003–7011. doi:10.1158/1078-0432.CCR-05-1131

    Article  PubMed  CAS  Google Scholar 

  41. Borsig L (2004) Selectins facilitate carcinoma metastasis and heparin can prevent them. News Physiol Sci 19:16–21. doi:10.1152/nips.01450.2003

    PubMed  CAS  Google Scholar 

  42. Kannagi R (1997) Carbohydrate-mediated cell adhesion involved in hematogenous metastasis of cancer. Glycoconj J 14:577–584. doi:10.1023/A:1018532409041

    Article  PubMed  CAS  Google Scholar 

  43. Borsig L, Wong R, Feramisco J et al (2001) Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins and tumor metastasis. Proc Natl Acad Sci USA 98:3352–3357. doi:10.1073/pnas.061615598

    Article  PubMed  CAS  Google Scholar 

  44. Takita M, Inada M, Maruyama T et al (2007) Prostaglandin E receptor EP4 antagonist suppresses osteolysis due to bone metastasis of mouse malignant melanoma cells. FEBS Lett 581:565–571. doi:10.1016/j.febslet.2007.01.005

    Article  PubMed  CAS  Google Scholar 

  45. Bakewell SJ, Nestor P, Prasad S et al (2003) Platelet and osteoclast β3 integrins are critical for bone metastasis. Proc Natl Acad Sci USA 100:14205–14210. doi:10.1073/pnas.2234372100

    Article  PubMed  CAS  Google Scholar 

  46. Monreal M, Lafoz E, Olive A, del Rio L, Vedia C (1994) Comparison of subcutaneous unfractionated heparin with a low molecular weight heparin (Fragmin) in patients with venous thromboembolism and contraindications to Coumarin. Thromb Haemost 71:7–11

    PubMed  CAS  Google Scholar 

  47. Pettila V, Leinonen P, Markkola A, Hiilesmaa V, Kaaja R (2002) Postpartum bone mineral density in women treated for thromboprophylaxis with unfractionated heparin or LMW heparin. Thromb Haemost 87:182–196

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen G. Shaughnessy.

Additional information

Supported by a Canadian Institutes of Health Team Grant in Venous Thromboembolism (#MOP-FRN-79846).

J. I. Weitz is a Career Investigator of the Heart and Stroke Foundation of Ontario (HSFO) and holds a Canada Research Chair in Thrombosis and the HSFO/J.F. Mustard Chair in Cardiovascular Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yee, C.K., Butcher, M., Zeadin, M. et al. Inhibition of osteolytic bone metastasis by unfractionated heparin. Clin Exp Metastasis 25, 903–911 (2008). https://doi.org/10.1007/s10585-008-9212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-008-9212-0

Keywords

Navigation