Skip to main content

Advertisement

Log in

Climate Change Scenarios for the Hudson Bay Region: An Intermodel Comparison

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

General circulation models (GCMs) are unanimous in projecting warmer temperatures in an enhanced CO2 atmosphere, with amplification of this warming in higher latitudes. The Hudson Bay region, which is located in the Arctic and subarctic regions of Canada, should therefore be strongly influenced by global warming. In this study, we compare the response of Hudson Bay to a transient warming scenario provided by six-coupled atmosphere-ocean models. Our analysis focuses on surface temperature, precipitation, sea-ice coverage, and permafrost distribution. The results show that warming is expected to peak in winter over the ocean, because of a northward retreat of the sea-ice cover. Also, a secondary warming peak is observed in summer over land in the Canadian and Australian-coupled GCMs, which is associated with both a reduction in soil moisture conditions and changes in permafrost distribution. In addition, a relationship is identified between the retreat of the sea-ice cover and an enhancement of precipitation over both land and oceanic surfaces. The response of the sea-ice cover and permafrost layer to global warming varies considerably among models and thus large differences are observed in the projected regional increase in temperature and precipitation. In view of the important feedbacks that a retreat of the sea-ice cover and the distribution of permafrost are likely to play in the doubled and tripled CO2 climates of Hudson Bay, a good representation of these two parameters is necessary to provide realistic climate change scenarios. The use of higher resolution regional climate model is recommended to develop scenarios of climate change for the Hudson Bay region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anisimov, O. A. and Nelson, F. E.: 1997, ‘Permafrost zonation and climate change in the northern hemisphere: Results from transient general circulation models’, Climatic Change 35, 241–258.

    Article  Google Scholar 

  • Boer, G. J., Flato, G., Reader, M. C., and Ramsden, D.: 2000, ‘A transient climate change simulation with greenhouse gas and aerosol forcing: Experimental design and comparison with the instrumental record for the 20th century’, Climate Dyn. 16, 405–426.

    Article  Google Scholar 

  • Bush, E., Etkin, D. A., Hayley, D., Hivon, E., Ladanyi, B., Lavender, B., Paoli, G., Riseborough, D., Smith, J., and Smith, M.: 1998, Climate Change Impacts on Permafrost Engineering Designs, Environment Canada, Environmental Adaptation Research Group, Downsview.

    Google Scholar 

  • Cohen, S. J., Agnew, T., Headley, A., Louie, P., Reycroft, J. and Skinner, W.: 1994, Climate Variability, Climatic Change, and Implications for the Future of the Hudson Bay Bioregion, Environment Canada, Ottawa.

  • Cubasch, U., Meehl, G. A., Boer, G. J., Stouffer, R. J., Dix, M., Noda, A., Senior, C. A., Raper, S., and Yap, K. S.: 2001, ‘Projections of future climate change’, in Houghton, J. T., Ding, Y., D. J. Griggs, Noguer, M., van der Linden, P. J., Dai, X., Maskell, K., and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,Cambridge University Press, Cambridge.

    Google Scholar 

  • Emori, S., Nozawa, T., Abe-Ouchi, A., Numaguti, A., Kimoto, M. and Nakajima, T.: 1999, ‘Coupled ocean-atmosphere model experiments of future climate change with an explicit representation of sulfate aerosol scattering’, J. Meteorol. Soc. Jpn. 77, 1299–1307.

    Google Scholar 

  • Felzer, B. and Heard, P.: 1999, ‘Precipitation differences amongst GCMs used for the U.S. national assessment’, J. Am. Water Resour. Assoc. 35: 1327–1339.

    Google Scholar 

  • Flato, G. M. and Boer, G. J.: 2001, ‘Warming asymmetry in climate change simulations’, Geophys. Res. Lett. 28, 195–198.

    Article  Google Scholar 

  • Flato, G. M., Boer, G. J., Lee, W. G., McFarlane, N. A., Ramsden, D., Reader, M. C. and Weaver, A. J.: 2000, ‘The Canadian centre for climate modelling and analysis global coupled model and its climate’, Climate Dyn. 16, 451–467.

    Article  Google Scholar 

  • Gagnon, A. S. and Gough W. A.: 2002, ‘Hydroclimatic trends in the Hudson bay region, Canada’, Can. Water Resour. J. 27, 245–262.

    Google Scholar 

  • Gaston, A. J. and Hipfner, M.: 1998, ‘The effect of ice conditions in northern Hudson Bay on breeding by thick-billed Murres (Uria lomvia)’, Can. J. Zool. 76, 480–492.

    Article  Google Scholar 

  • Gent, P. R. and McWilliams, J. C.: 1990, ‘Isopycnal mixing in ocean circulation models’, J. Phys. Oceanogr. 20, 150–155.

    Article  Google Scholar 

  • Gordon, H. B. and O’Farrell, S. P.: 1997, ‘Transient climate change in the CSIRO coupled model with dynamic sea ice’, Mon. Weather Rev. 125, 875–907.

    Article  Google Scholar 

  • Gough, W. A. and Allakhverdova, T.: 1999, ‘Limitations of using a coarse resolution model to assess the impact of climate change on sea ice in Hudson Bay’, Can. Geographer 43, 415–422.

    Google Scholar 

  • Gough, W. A. and Leung, A.: 2002, ‘Nature and fate of Hudson Bay permafrost’, Reg. Environ. Change 2, 177–184.

    Article  Google Scholar 

  • Gough, W. A. and Wolfe, E.: 2001, ‘Climate change scenarios for Hudson Bay, Canada, from general circulation models’, Arctic 54, 142–148.

    Google Scholar 

  • Groisman, P. Y., Koknaeva, V. V., Belokrylova, T. A. and Karl, T. R.: 1991, ‘Overcoming biases of precipitation measurements: A history of the USSR experience’, Bull. Am. Meteorol. Soc. 72, 1725–1733.

    Article  Google Scholar 

  • Grotch, S. L. and MacCracken, M. C.: 1991, ‘The use of general circulation models to predict regional climate change’, J. Climate 4, 286–303.

    Article  Google Scholar 

  • Hansell, R. I. C., Malcolm, J. R., Welch, H., Jefferies, R. L. and Scott, P. A.: 1998, ‘Atmospheric change and biodiversity in the Arctic’, Environ. Monit. Assess. 49, 303–325.

    Article  Google Scholar 

  • Harvey, L. D. D.: 2000, Global Warming The Hard Science,Prentice Hall, Toronto.

    Google Scholar 

  • Johns, T. C., Carnell, R. E., Crossley, J. F., Gregory, J. M., Mitchell, J. F. B., Senior, C. A., Tett, S. F. B. and Wood, R. A.: 1997, ‘The second Hadley Centre coupled ocean-atmosphere GCM: Model description, spinup and validation’, Climate Dyn. 13, 103–134.

    Article  Google Scholar 

  • Lynch, A. H., Chapman, W. L., Walsh, J. E. and Weller, G.: 1995, ‘Development of a regional climate model of the western Arctic’, J. Climate 8, 1555–1570.

    Article  Google Scholar 

  • Manabe, S. J. and Stouffer, R. J.: 1996, ‘Low-frequency variability of surface air temperature in a 1000-yr integration of a coupled atmosphere-ocean-land model’, J. Climate 9, 376–393.

    Article  Google Scholar 

  • Manabe, S., Stouffer, R. J., Spelman, M. J. and Bryan, K.: 1991, ‘Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part I: Annual mean response’, J. Climate 4, 785–818.

    Article  Google Scholar 

  • Markham, W. E.: 1986, ‘The ice cover’, in Martini, I. P. (ed.), Canadian Inland Seas, Elsevier, Amsterdam.

    Google Scholar 

  • Maxwell, J. B.: 1986a, ‘The ice cover’, in Martini, I. P. (ed.), Canadian Inland Seas, Elsevier, Amsterdam.

    Google Scholar 

  • Maxwell, J. B.: 1986b, ‘A climate overview of the Canadian inland seas’, in Martini, I. P. (ed.), Canadian Inland Seas, Elsevier, Amsterdam.

    Google Scholar 

  • McAvaney, B. J., Covey, C., Joussaume, S., Kattsov, V., Kitoh, A., Ogana, W., Pitman, A. J., Weaver, A. J., Wood, R. A., and Zhao, Z.-C.: 2001, ‘Model evaluation’, in Houghton, J. T., Ding, Y., D. J. Griggs, Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,Cambridge University Press, Cambridge.

    Google Scholar 

  • McFarlane, N. A., Boer, G. J., Blanchet, J.-P. and Lazare, M.: 1992, ‘The Canadian climate centre second-generation general circulation model and its equilibrium climate’, J. Climate 5: 1013–1044.

    Article  Google Scholar 

  • Oberhuber, J. M.: 1993, ‘Simulation of the Atlantic circulation with a coupled sea-ice mixed layer-isopycnal general circulation model. Part I: Model description’, J. Phys. Oceanogr. 13, 808–829.

    Article  Google Scholar 

  • Pollard, D. and Thompson, S. L.: 1994, ‘Sea-ice dynamics and CO2 sensitivity in a global climate model’, Atmosphere-Ocean 32, 449–467.

    Google Scholar 

  • Prather, M., Ehhalt, D., Dentener, F., Derwent, R., Dlugokencky, E., Holland, E., Isaksen, I., Katima, J., Kirchhoff, V., Matson, P., Midgley, P., and Wang, M. (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the third Assessment Report of the intergovernmental Panel on Climate Change,Cambridge University Press, Cambridge.

  • Ramaswamy, V., Boucher, O., Haigh, J., Hauglustaine, D., Haywood, J., Myhre, G., Nakajima, T., Shi, G. Y., and Solomon, S.: 2001, ‘Radiative forcing of climate change’, in Houghton, J. T., Ding, Y., D. J. Griggs, Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,Cambridge University Press, Cambridge.

    Google Scholar 

  • Reader, M. C. and Boer, G. J.: 1998, ‘The modification of greenhouse gas warming by the direct effect of sulphate aerosols’, Climate Dyn. 14, 593–608.

    Article  Google Scholar 

  • Reynolds, R. W., Rayner, N. A., Smith, T. M., Stokes, D. C. and Wang, W.: 2002, ‘An improved in situand satellite SST analysis for climate’, J. Climate 15, 1609–1625.

    Article  Google Scholar 

  • Roeckner, E., Oberhuber, J. M., Bacher, A., Christoph, M., and Kirchner, I.: 1996, ‘ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM’, Climate Dyn. 12, 737–754.

    Article  Google Scholar 

  • Rouse, W. R.: 1991, ‘Impacts of Hudson Bay on the terrestrial climate of the Hudson Bay lowlands’, Arctic Alpine Res. 23, 24–30.

    Google Scholar 

  • Saucier, F. J. and Dionne, J.: 1998, ‘A 3-D coupled ice-ocean model applied to Hudson Bay, Canada: The seasonal cycle and time-dependent climate response to atmospheric forcing and runoff’, J. Geophys. Res. 103, 27689–27705.

    Article  Google Scholar 

  • Shackley, S., Risbey, J., Stone, P., and Wynne, B.: 1999, ‘Adjusting to policy implications in climate change modelling. An interdisciplinary study of flux adjustments in coupled atmosphere-ocean general circulation models’, Climatic Change 43, 413–454.

    Article  Google Scholar 

  • Stirling, I., Lunn, N. J. and Iacozza, J.: 1999, ‘Long-term trends in the population ecology of polar bears in western Hudson Bay in relation to climatic change’, Arctic 52, 294–306.

    Google Scholar 

  • Stirling, I. and Derocher, A. E.: 1993, ‘Possible impacts of climatic warming on polar bears’, Arctic 46, 240–245.

    Google Scholar 

  • Stocker, T. F., Clarke, G. K. C., Le Treut H., Lindzen, R. S., Meleshko, V. P., Mugara, R. K., Palmer, T. N., Pierrehumbert, R. T., Sellers, P. J., Trenberth, K. E., and Willebrand J.: 2001, ‘Physical climate processes and feedbacks’, in Houghton, J. T., Ding, Y., D. J. Griggs, Noguer, M., van der Linden, P. J., Dai, X., Maskell, K. and Johnson, C. A. (eds.), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change,Cambridge University Press, Cambridge.

    Google Scholar 

  • Von Gunten, B.: 2000, ‘Canada Port gains as ice diminishes’, New York Times (November 3), http://www.nytimes.com/2000/11/03/business/03SHIP.html.

  • Walsh, J. E. and Crane, R. G.: 1992, ‘A comparison of GCM simulation of Arctic climate’, Geophys. Res. Lett. 19, 29–32.

    Google Scholar 

  • Winter, T. C. and Woo, M. K.: 1990, ‘Hydrology of lakes and wetlands’, in Wolman, M. G. and Riggs, H. C. (eds.), The Geology of North America, vol. 0–1, The Geological Society of America.

  • Wolfe, E.: 1999, Permafrost Human Adaptation to Climate Change in the Hudson Bay Region, Master’s Thesis, University of Toronto, 105 p.

  • Woo, M.-K., Rouse, W. R., Lewkowicz, A. G., and Young, K. L.: 1992, Adaptation to Permafrost in the Canadian North: Present and Future, unpublished manuscript from the Canadian Climate Program.

  • Yang, D., Goodison, B., Metcalfe, J., Louie, P., Elomaa, E., Hanson, C., Golubev, V., Gunther, T., Milkovic, J. and Lapin, M.: 2001, ‘Compatibility evaluation of national precipitation gage measurements’, J. Geophys. Res. 106(D2), 1481–1491.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre S. Gagnon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gagnon, A.S., Gough, W.A. Climate Change Scenarios for the Hudson Bay Region: An Intermodel Comparison. Climatic Change 69, 269–297 (2005). https://doi.org/10.1007/s10584-005-1815-8

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-005-1815-8

Keywords

Navigation